login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A054225 Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs. 30

%I #128 Jan 01 2024 08:02:01

%S 1,1,1,2,2,2,3,4,4,3,5,7,9,7,5,7,12,16,16,12,7,11,19,29,31,29,19,11,

%T 15,30,47,57,57,47,30,15,22,45,77,97,109,97,77,45,22,30,67,118,162,

%U 189,189,162,118,67,30,42,97,181,257,323,339,323,257,181,97,42,56,139,267,401,522,589,589,522,401,267,139,56

%N Triangle read by rows: row n (n>=0) gives the number of partitions of (n,0), (n-1,1), (n-2,2), ..., (0,n) respectively into sums of pairs.

%C By analogy with ordinary partitions (A000041). The empty partition gives T(0,0)=1 by definition. A054225 and A201377 give partitions of pairs into sums of distinct pairs. Parts (i,j) are "positive" in the sense that min {i,j} >= 0 and max {i,j} >0. The empty partition of (0,0) is counted as 1.

%C Or, triangle T(n,k) of bipartite partitions of n objects, k of which are black.

%C Or, number of ways to factor p^(n-k)*q^k where p and q are distinct primes.

%C In the paper by F. C. Auluck: "On partitions of bipartite numbers", p.74, in the formula for fixed m there should be factor 1/m!. The correct asymptotic formula is p(m, n) ~ (sqrt(6*n)/Pi)^m * exp(Pi*sqrt(2*n/3)) / (4*sqrt(3)*m!*n). - _Vaclav Kotesovec_, Feb 01 2016

%C T(n,k)=T(n,k-n) is the number of multiset partitions of the multiset {1^k, 2^(n-k)}, see example link. - _Joerg Arndt_, Jan 01 2024

%D M. S. Cheema, Tables of partitions of Gaussian integers, National Institute of Sciences of India, New Delhi, 1956.

%D D. E. Knuth, The Art of Computer Programming, Vol. 4A, Table A-1, page 778. - _N. J. A. Sloane_, Dec 30 2018

%H Alois P. Heinz, <a href="/A054225/b054225.txt">Rows n = 0..200, flattened</a>

%H Joerg Arndt, <a href="/A054225/a054225.txt">Multiset partitions of the multisets {1^r,2^s} for r+s=5</a>.

%H F. C. Auluck, <a href="http://dx.doi.org/10.1017/S0305004100028061">On partitions of bipartite numbers</a>, Proc. Cambridge Philos. Soc. 49, (1953). 72-83.

%H F. C. Auluck, <a href="/A002774/a002774.pdf">On partitions of bipartite numbers, annotated scan of a few pages.</a>

%H F. C. Auluck, <a href="/A002774/a002774_1.pdf">On partitions of bipartite numbers</a>, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 49, Issue 01, January 1953, pp. 72-83. (full article)

%H P. A. MacMahon, <a href="http://www.jstor.org/stable/90574">Memoir on symmetric functions of the roots of systems of equations</a>, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.

%H Reinhard Zumkeller, <a href="/A054225/a054225_1.lhs.txt">Haskell programs for A201376, A054225, A201377, A054242</a>

%F G.f.: Product_{i>=1, j=0..i} 1/(1-x^(i-j)*y^j).

%F Series ends ... + 7*x^5 + 12*x^4*y + 16*x^3*y^2 + 16*x^2*y^3 + 12*x*y^4 + 7*y^5 + 5*x^4 + 7*x^3*y + 9*x^2*y^2 + 7*x*y^3 + 5*y^4 + 3*x^3 + 4*x^2*y + 4*x*y^2 + 3*y^3 + 2*x^2 + 2*x*y + 2*y^2 + x + y + 1.

%e The second row (n=1) is 1,1 since (1,0) and (0,1) each have a single partition.

%e The third row (n=2) is 2, 2, 2 from (2,0) = (1,0)+(1,0), (1,1) = (1,0)+(0,1), (0,2) = (0,1)+(0,1).

%e In the fourth row (n=3), T(2,1)=4 from (2,1) = (2,0)+(0,1) = (1,0)+(1,1) = (1,0)+(1,0)+(0,1).

%e The triangle begins:

%e 1;

%e 1, 1;

%e 2, 2, 2;

%e 3, 4, 4, 3;

%e 5, 7, 9, 7, 5;

%e 7, 12, 16, 16, 12, 7;

%e 11, 19, 29, 31, 29, 19, 11;

%e 15, 30, 47, 57, 57, 47, 30, 15;

%e 22, 45, 77, 97, 109, 97, 77, 45, 22;

%e ...

%e A further example: T(2,2) = 9:

%e [(2,2)],

%e [(2,1),(0,1)],

%e [(2,0),(0,2)],

%e [(2,0),(0,1),(0,1)],

%e [(1,2),(1,0)],

%e [(1,1),(1,1)],

%e [(1,1),(1,0),(0,1)],

%e [(1,0),(1,0),(0,2)],

%e [(1,0),(1,0),(0,1),(0,1)].

%p read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=1..11): SERIES2(t1,x,y,6);

%t rows = 11; se = Series[ Product[ 1/(1-x^(n-k)*y^k), {n, 1, rows}, {k, 0, n}], {x, 0, rows}, {y, 0, rows}]; coes = CoefficientList[ se, {x, y}]; Flatten[ Table[ coes[[n-k+1, k]], {n, 1, rows+1}, {k, 1, n}]] (* _Jean-François Alcover_, Nov 21 2011, after g.f. *)

%t p = 2; q = 3; b[n_, k_] := b[n, k] = If[n>k, 0, 1] + If[PrimeQ[n], 0, Sum[If[d>k, 0, b[n/d, d]], {d, DeleteCases[Divisors[n], 1|n]}]]; t[n_, k_] := b[p^(n-k)*q^k, p^(n-k)*q^k]; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)

%o (PARI) {T(n, k) = if( n<0 || k<0, 0, polcoeff( polcoeff( prod( i=1, n, prod( j=0, i, 1 / (1 - x^i * y^j), 1 + x * O(x^n))),n),k))} /* _Michael Somos_, Apr 19 2005 */

%o (Haskell) see Zumkeller link.

%Y See A201376 for the same triangle formatted in a different way.

%Y Columns 0-10: A000041, A000070, A000291, A000412, A000465, A000491, A002755, A002756, A002757, A002758, A002759.

%Y Row sums: A005380. a(2n, n): A002774. a(n, [n/2]): A091437. Cf. A060244.

%Y The outer edges are T(n,0) = T(0,n) = A000041(n).

%Y A054242 gives partitions into sums of distinct pairs.

%K easy,nonn,tabl,nice,look

%O 0,4

%A _Marc LeBrun_, Feb 04 2000

%E Entry revised by _N. J. A. Sloane_, Nov 30 2011, to incorporate corrections provided by _Reinhard Zumkeller_, who also contributed the alternative version A201376. Once the errors were corrected, this sequence coincided with A060243, due to _N. J. A. Sloane_, Mar 22 2001, which included edits by _Vladeta Jovovic_, Mar 23 2001, and _Christian G. Bower_, Jan 08 2004. The two entries have now been merged.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 01:06 EDT 2024. Contains 371964 sequences. (Running on oeis4.)