The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A053809 Second partial sums of A001891. 2
 1, 6, 21, 57, 133, 281, 554, 1039, 1878, 3302, 5686, 9638, 16143, 26796, 44179, 72471, 118435, 193015, 313920, 509805, 827036, 1340636, 2171996, 3517532, 5695053, 9218786, 14920769, 24147269, 39076593, 63233317, 102320326 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 REFERENCES A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196. LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1). FORMULA a(n) = a(n-1) + a(n-2) + (2*n+3)*C(n+2, 2)/3; a(-x)=0. a(n) = Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6. G.f.: (1+x)/((1-x)^4*(1-x-x^2)). MATHEMATICA Table[Fibonacci[n+10] - (2*n^3+27*n^2+145*n+324)/6, {n, 0, 40}] (* G. C. Greubel, Jul 06 2019 *) PROG (PARI) vector(40, n, n--; fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) \\ G. C. Greubel, Jul 06 2019 (MAGMA) [Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6: n in [0..40]]; // G. C. Greubel, Jul 06 2019 (Sage) [fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6 for n in (0..40)] # G. C. Greubel, Jul 06 2019 (GAP) List([0..40], n-> Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) # G. C. Greubel, Jul 06 2019 CROSSREFS Cf. A001911, A001891, A053808. Right-hand column 9 of triangle A011794. Pairwise sums of A014166. Sequence in context: A056414 A056341 A144899 * A290891 A047520 A294836 Adjacent sequences:  A053806 A053807 A053808 * A053810 A053811 A053812 KEYWORD easy,nonn AUTHOR Barry E. Williams, Mar 27 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 7 12:45 EDT 2020. Contains 333305 sequences. (Running on oeis4.)