OFFSET
0,2
REFERENCES
A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (5,-9,6,1,-3,1).
FORMULA
a(n) = a(n-1) + a(n-2) + (2*n+3)*C(n+2, 2)/3; a(-x)=0.
a(n) = Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6.
G.f.: (1+x)/((1-x)^4*(1-x-x^2)).
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6). - Wesley Ivan Hurt, Apr 21 2021
MATHEMATICA
Table[Fibonacci[n+10] - (2*n^3+27*n^2+145*n+324)/6, {n, 0, 40}] (* G. C. Greubel, Jul 06 2019 *)
PROG
(PARI) vector(40, n, n--; fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) \\ G. C. Greubel, Jul 06 2019
(Magma) [Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6: n in [0..40]]; // G. C. Greubel, Jul 06 2019
(Sage) [fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6 for n in (0..40)] # G. C. Greubel, Jul 06 2019
(GAP) List([0..40], n-> Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) # G. C. Greubel, Jul 06 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Barry E. Williams, Mar 27 2000
STATUS
approved