login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Most significant bit of n, msb(n); largest power of 2 less than or equal to n; write n in binary and change all but the first digit to zero.
117

%I #102 Jul 28 2022 09:07:06

%S 0,1,2,2,4,4,4,4,8,8,8,8,8,8,8,8,16,16,16,16,16,16,16,16,16,16,16,16,

%T 16,16,16,16,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,32,

%U 32,32,32,32,32,32,32,32,32,32,32,32,32,64,64,64,64,64,64,64,64,64,64,64

%N Most significant bit of n, msb(n); largest power of 2 less than or equal to n; write n in binary and change all but the first digit to zero.

%C Except for the initial term, 2^n appears 2^n times. - _Lekraj Beedassy_, May 26 2005

%C a(n) is the smallest k such that row k in triangle A265705 contains n. - _Reinhard Zumkeller_, Dec 17 2015

%C a(n) is the sum of totient function over powers of 2 <= n. - _Anthony Browne_, Jun 17 2016

%C Given positive n, reverse the bits of n and divide by 2^floor(log_2 n). Numerators are in A030101. Ignoring the initial 0, denominators are in this sequence. - _Alonso del Arte_, Feb 11 2020

%H Reinhard Zumkeller, <a href="/A053644/b053644.txt">Table of n, a(n) for n = 0..10000</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Ralf Stephan, <a href="/somedcgf.html">Some divide-and-conquer sequences ...</a>

%H Ralf Stephan, <a href="/A079944/a079944.ps">Table of generating functions</a>

%F a(n) = a(floor(n / 2)) * 2.

%F a(n) = 2^A000523(n).

%F From n >= 1 onward, A053644(n) = A062383(n)/2.

%F a(0) = 0, a(1) = 1 and a(n+1) = a(n)*floor(n/a(n)). - _Benoit Cloitre_, Aug 17 2002

%F G.f.: 1/(1 - x) * (x + Sum_{k >= 1} 2^(k - 1)*x^2^k). - _Ralf Stephan_, Apr 18 2003

%F a(n) = (A003817(n) + 1)/2 = A091940(n) + 1. - _Reinhard Zumkeller_, Feb 15 2004

%F a(n) = Sum_{k = 1..n} (floor(2^k/k) - floor((2^k - 1)/k))*A000010(k). - _Anthony Browne_, Jun 17 2016

%F a(2^m+k) = 2^m, m >= 0, 0 <= k < 2^m. - _Yosu Yurramendi_, Aug 07 2016

%p a:= n-> 2^ilog2(n):

%p seq(a(n), n=0..80); # _Alois P. Heinz_, Dec 20 2016

%t A053644[n_] := 2^(Length[ IntegerDigits[n, 2]] - 1); A053644[0] = 0; Table[A053644[n], {n, 0, 74}] (* _Jean-François Alcover_, Dec 01 2011 *)

%t nv[n_] := Module[{c = 2^n}, Table[c, {c}]]; Join[{0}, Flatten[Array[nv, 7, 0]]] (* _Harvey P. Dale_, Jul 17 2012 *)

%o (Haskell)

%o a053644 n = if n <= 1 then n else 2 * a053644 (div n 2)

%o -- _Reinhard Zumkeller_, Aug 28 2014

%o a053644_list = 0 : concat (iterate (\zs -> map (* 2) (zs ++ zs)) [1])

%o -- _Reinhard Zumkeller_, Dec 08 2012, Oct 21 2011, Oct 17 2010

%o (PARI) a(n)=my(k=1);while(k<=n,k<<=1);k>>1 \\ _Charles R Greathouse IV_, May 27 2011

%o (PARI) a(n) = if(!n, 0, 2^exponent(n)) \\ _Iain Fox_, Dec 10 2018

%o (Python)

%o def a(n): return 0 if n==0 else 2**(len(bin(n)[2:]) - 1) # _Indranil Ghosh_, May 25 2017

%o (Magma) [0] cat [2^Ilog2(n): n in [1..90]]; // _Vincenzo Librandi_, Dec 11 2018

%o (Scala) (0 to 127).map(Integer.highestOneBit(_)) // _Alonso del Arte_, Feb 26 2020

%o (Python)

%o def A053644(n): return 1<<n.bit_length()-1 if n else 0 # _Chai Wah Wu_, Jul 27 2022

%Y See A000035 for least significant bit(n).

%Y MASKTRANS transform of A055975 (prepended with 0), MASKTRANSi transform of A048678.

%Y Bisection of A065267, A065279, A065291, A072376.

%Y First differences of A063915. Cf. A076877, A073121.

%Y This is Guy Steele's sequence GS(5, 5) (see A135416).

%Y Equals for n >= 1 the first right hand column of A160464. - _Johannes W. Meijer_, May 24 2009

%Y Diagonal of A088370. - _Alois P. Heinz_, Oct 28 2011

%Y Cf. A265705, A000010.

%K nonn,nice,easy

%O 0,3

%A _Henry Bottomley_, Mar 22 2000