login
a(n) = ceiling(binomial(n,4)/n).
6

%I #31 Sep 08 2022 08:45:00

%S 0,0,0,1,1,3,5,9,14,21,30,42,55,72,91,114,140,170,204,243,285,333,385,

%T 443,506,575,650,732,819,914,1015,1124,1240,1364,1496,1637,1785,1943,

%U 2109,2285,2470,2665,2870,3086,3311,3548,3795,4054,4324

%N a(n) = ceiling(binomial(n,4)/n).

%H Colin Barker, <a href="/A053618/b053618.txt">Table of n, a(n) for n = 1..1000</a>

%H R. L. Graham and N. J. A. Sloane, <a href="http://dx.doi.org/10.1109/TIT.1980.1056141">Lower bounds for constant weight codes</a>, IEEE Trans. Inform. Theory, 26 (1980), 37-43.

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,0,0,0,1,-3,3,-1).

%F a(n) = ( 2*n^3 - 12*n^2 + 22*n - 3 + 9*(-1)^n + 3*(1+(-1)^n)*(-1)^(n*(n-1)/2) - 6*(1 + (-1)^n)*(-1)^floor(n/4) )/48. - _Luce ETIENNE_, Jan 20 2015

%F G.f.: x^4*(1 - x + x^2)*(1 - x + x^2 + x^4)/((1-x)^3*(1-x^8)). - _Colin Barker_, Jan 20 2015

%t CoefficientList[Series[x^4*(1-x+x^2)*(1-x+x^2+x^4)/((1-x)^3*(1-x^8)), {x,0,60}], x] (* _G. C. Greubel_, May 16 2019 *)

%o (PARI) concat([0,0,0], Vec(x^4*(x^2-x+1)*(x^4+x^2-x+1) / ((x-1)^4*(x+1)*(x^2+1)*(x^4+1)) + O(x^60))) \\ _Colin Barker_, Jan 20 2015

%o (Magma) [Ceiling(Binomial(n,4)/n): n in [1..60]]; // _G. C. Greubel_, May 16 2019

%o (Sage) [ceil(binomial(n,4)/n) for n in (1..60)] # _G. C. Greubel_, May 16 2019

%Y Cf. A007997, A008646, A032192, A053643, A053731, A053733.

%K nonn,easy

%O 1,6

%A _N. J. A. Sloane_, Mar 25 2000