login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A053120 Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order). 210

%I #115 Dec 14 2023 08:56:48

%S 1,0,1,-1,0,2,0,-3,0,4,1,0,-8,0,8,0,5,0,-20,0,16,-1,0,18,0,-48,0,32,0,

%T -7,0,56,0,-112,0,64,1,0,-32,0,160,0,-256,0,128,0,9,0,-120,0,432,0,

%U -576,0,256,-1,0,50,0,-400,0,1120,0,-1280,0,512,0,-11,0,220,0,-1232,0,2816,0,-2816,0,1024

%N Triangle of coefficients of Chebyshev's T(n,x) polynomials (powers of x in increasing order).

%C Row sums (signed triangle): A000012 (powers of 1). Row sums (unsigned triangle): A001333(n).

%C From _Wolfdieter Lang_, Oct 21 2013: (Start)

%C The row polynomials T(n,x) equal (S(n,2*x) - S(n-2,2*x))/2, n >= 0, with the row polynomials S from A049310, with S(-1,x) = 0, and S(-2,x) = -1.

%C The zeros of T(n,x) are x(n,k) = cos((2*k+1)*Pi/(2*n)), k = 0, 1, ..., n-1, n >= 1. (End)

%C From _Wolfdieter Lang_, Jan 03 2020 and _Paul Weisenhorn_: (Start)

%C The (sub)diagonal sequences {D_{2*k}(m)}_{m >= 0}, for k >= 0, have o.g.f. GD_{2*k}(x) = (-1)^k*(1-x)/(1-2*x)^(k+1), for k >= 0, and GD_{2*k+1}(x) = 0, for k >= 0. This follows from their o.g.f. GGD(z, x) := Sum_{k>=0} GD_k(x)*z^n which is obtained from the o.g.f of the T-triangle GT(z, x) = (1-x*z)/(1 - 2*x + z^2) (see the formula section) by GGD(z, x) = GT(z, x/z).

%C The explicit form is then D_{2*k}(m) = (-1)^k, for m = 0, and

%C (-1)^k*(2*k+m)*2^(m-1)*risefac(k+1, m-1)/m!, for m >= 1, with the rising factorial risefac(x, n). (End)

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964. Tenth printing, Wiley, 2002 (also electronically available), p. 795.

%D F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.

%D Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

%D TableCurve 2D, Automated curve fitting and equation discovery, Version 5.01 for Windows, User's Manual, Chebyshev Series Polynomials and Rationals, pages 12-21 - 12-24, SYSTAT Software, Inc., Richmond, WA, 2002.

%H T. D. Noe, <a href="/A053120/b053120.txt">Rows 0 to 100 of triangle, flattened</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [scanned copy], p.795.

%H Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry5/barry96s.html">Meixner-Type Results for Riordan Arrays and Associated Integer Sequences</a>, J. Int. Seq. 13 (2010) # 10.9.4, section 5.

%H Tom Copeland, <a href="http://tcjpn.wordpress.com/2015/10/12/the-elliptic-lie-triad-kdv-and-ricattt-equations-infinigens-and-elliptic-genera/">Addendum to Elliptic Lie Triad</a>

%H P. Damianou, <a href="http://arxiv.org/abs/1110.6620">On the characteristic polynomials of Cartan matrices and Chebyshev polynomials</a>, arXiv preprint arXiv:1110.6620 [math.RT], 2014.- From _Tom Copeland_, Oct 11 2014

%H Aoife Hennessy, <a href="http://repository.wit.ie/1693/1/AoifeThesis.pdf">A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths</a>, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.

%H Wolfdieter Lang, <a href="/A053120/a053120.pdf">Rows n = 0..20.</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chebyshev_polynomials">Chebyshev polynomials</a>

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%F T(n, m) = A039991(n, n-m).

%F G.f. for row polynomials T(n,x) (signed triangle): (1-x*z)/(1-2*x*z+z^2). If unsigned: (1-x*z)/(1-2*x*z-z^2).

%F T(n, m) := 0 if n < m or n+m odd; T(n, m) = (-1)^(n/2) if m=0 (n even); otherwise T(n, m) = ((-1)^((n+m)/2 + m))*(2^(m-1))*n*binomial((n+m)/2-1, m-1)/m.

%F Recursion for n >= 2: T(n, m) = T*a(n-1, m-1) - T(n-2, m), T(n, m)=0 if n < m, T(n, -1) := 0, T(0, 0) = T(1, 1) = 1.

%F G.f. for m-th column (signed triangle): 1/(1+x^2) if m=0, otherwise (2^(m-1))*(x^m)*(1-x^2)/(1+x^2)^(m+1).

%F From _G. C. Greubel_, Aug 10 2022: (Start)

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A000007(n).

%F T(2*n, n) = i^n * A036909(n/2) * (1+(-1)^n)/2 + [n=0]/3. (End)

%F T(n, k) = [x^k] T(n, x) for n >= 1, where T(n, x) = Sum_{k=1..n}(-1)^(n - k)*(n/ (2*k))*binomial(k, n - k)*(2*x)^(2*k - n). - _Peter Luschny_, Sep 20 2022

%e The triangle a(n,m) begins:

%e n\m 0 1 2 3 4 5 6 7 8 9 10...

%e 0: 1

%e 1: 0 1

%e 2: -1 0 2

%e 3: 0 -3 0 4

%e 4: 1 0 -8 0 8

%e 5: 0 5 0 -20 0 16

%e 6: -1 0 18 0 -48 0 32

%e 7: 0 -7 0 56 0 -112 0 64

%e 8: 1 0 -32 0 160 0 -256 0 128

%e 9: 0 9 0 -120 0 432 0 -576 0 256

%e 10: -1 0 50 0 -400 0 1120 0 -1280 0 512

%e ... Reformatted and extended - _Wolfdieter Lang_, Oct 21 2013

%e E.g., the fourth row (n=3) corresponds to the polynomial T(3,x) = -3*x + 4*x^3.

%p with(orthopoly) ;

%p A053120 := proc(n,k)

%p T(n,x) ;

%p coeftayl(%,x=0,k) ;

%p end proc: # _R. J. Mathar_, Jun 30 2013

%p T := (n, x) -> `if`(n = 0, 1, add((-1)^(n - k) * (n/(2*k))*binomial(k, n - k) *(2*x)^(2*k - n), k = 1 ..n)):

%p seq(seq(coeff(T(n, x), x, k), k = 0..n), n = 0..11); # _Peter Luschny_, Sep 20 2022

%t t[n_, k_] := Coefficient[ ChebyshevT[n, x], x, k]; Flatten[ Table[ t[n, k], {n, 0, 11}, {k, 0, n}]] (* _Jean-François Alcover_, Jan 16 2012 *)

%o (Magma) &cat[ Coefficients(ChebyshevT(n)): n in [0..11] ]; // _Klaus Brockhaus_, Mar 08 2008

%o (PARI) for(n=0,5,P=polchebyshev(n);for(k=0,n,print1(polcoeff(P,k)", "))) \\ _Charles R Greathouse IV_, Jan 16 2012

%o (Julia)

%o using Nemo

%o function A053120Row(n)

%o R, x = PolynomialRing(ZZ, "x")

%o p = chebyshev_t(n, x)

%o [coeff(p, j) for j in 0:n] end

%o for n in 0:6 A053120Row(n) |> println end # _Peter Luschny_, Mar 13 2018

%o (SageMath)

%o def f(n,k): # f = A039991

%o if (n<2 and k==0): return 1

%o elif (k<0 or k>n): return 0

%o else: return 2*f(n-1, k) - f(n-2, k-2)

%o def A053120(n,k): return f(n, n-k)

%o flatten([[A053120(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 10 2022

%Y Cf. A000007, A000012, A001333, A036909, A039991.

%Y The first nonzero (sub)diagonal sequences are A011782, -A001792, A001793(n+1), -A001794, A006974, -A006975, A006976, -A209404.

%K sign,tabl,nice,easy

%O 0,6

%A _Wolfdieter Lang_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)