Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Aug 15 2023 10:56:43
%S 1,1,2,6,12,26,60,132,292,652,1448,3216,7152,15896,35328,78528,174544,
%T 387952,862304,1916640,4260096,9468896,21046464,46779840,103977280,
%U 231109696,513686144,1141767168,2537799168,5640751232,12537664512,27867393024,61940690176
%N Expansion of (1-x)/(1-2*x-2*x^3+2*x^4).
%C a(n) is the number of compositions of n using three colors of 3. Compare to A077998 which gives the number of compositions of n using two colors of 2. - _Greg Dresden_ and Yushu Fan, Aug 15 2023
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1043">Encyclopedia of Combinatorial Structures 1043</a>
%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,2,-2).
%F G.f.: -(-1+x)/(1-2*x-2*x^3+2*x^4).
%F Recurrence: {a(1)=1, a(0)=1, a(3)=6, a(2)=2, 2*a(n)-2*a(n+1)-2*a(n+3)+a(n+4)=0}.
%F Sum(-1/227*(-29-50*_alpha+45*_alpha^3-14*_alpha^2)*_alpha^(-1-n), _alpha=RootOf(1-2*_Z-2*_Z^3+2*_Z^4)).
%p spec := [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Sequence(Z)),Z))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%t CoefficientList[Series[(1-x)/(1-2x-2x^3+2x^4),{x,0,30}],x] (* or *) LinearRecurrence[{2,0,2,-2},{1,1,2,6},32] (* _Harvey P. Dale_, Jul 23 2012 *)
%Y Cf. A077998.
%K easy,nonn
%O 0,3
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E More terms from _James A. Sellers_, Jun 06 2000