This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052947 Expansion of 1/(1-x^2-2*x^3). 16

%I

%S 1,0,1,2,1,4,5,6,13,16,25,42,57,92,141,206,325,488,737,1138,1713,2612,

%T 3989,6038,9213,14016,21289,32442,49321,75020,114205,173662,264245,

%U 402072,611569,930562,1415713,2153700,3276837,4985126,7584237,11538800

%N Expansion of 1/(1-x^2-2*x^3).

%C a(n) is the number of compositions (ordered partitions) of n into parts 1 of one kind and part 2 of two kinds. - _Joerg Arndt_, Oct 22 2019

%H G. C. Greubel, <a href="/A052947/b052947.txt">Table of n, a(n) for n = 0..1000</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1006">Encyclopedia of Combinatorial Structures 1006</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,2).

%F a(n) = a(n-2) + 2*a(n-3).

%F a(n) = Sum_{alpha=RootOf(-1+z^2+2*z^3)} (1/52)*(3 +17*alpha -2*alpha^2)*alpha^(-1-n).

%F a(n) = Sum_{k=0..floor(n/2)} C(k,n-2*k)*2^(n-2*k). - _Paul Barry_, Oct 16 2004

%F If p[1]=0, p[2]=1, p[3]=2, p[i]=0, (i>3), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - _Milan Janjic_, May 02 2010

%p spec:= [S,{S=Sequence(Prod(Union(Prod(Union(Z,Z),Z),Z),Z))}, unlabeled]: seq(combstruct[count ](spec,size=n), n=0..20);

%p seq(coeff(series(1/(1-x^2-2*x^3), x, n+1), x, n), n = 0..50); # _G. C. Greubel_, Oct 21 2019

%t LinearRecurrence[{0,1,2}, {1,0,1}, 50] (* _G. C. Greubel_, Oct 21 2019 *)

%o (PARI) my(x='x+O('x^50)); Vec(1/(1-x^2-2*x^3)) \\ _G. C. Greubel_, Oct 21 2019

%o (MAGMA) R<x>:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x^2-2*x^3) )); // _G. C. Greubel_, Oct 21 2019

%o (Sage)

%o def A052947_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P(1/(1-x^2-2*x^3)).list()

%o A052947_list(50) # _G. C. Greubel_, Oct 21 2019

%o (GAP) a:=[1,0,1];; for n in [4..50] do a[n]:=a[n-2]+2*a[n-3]; od; a; # _G. C. Greubel_, Oct 21 2019

%Y Column k=2 of A219946. - _Alois P. Heinz_, Dec 01 2012

%K easy,nonn

%O 0,4

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E More terms from _James A. Sellers_, Jun 05 2000

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)