login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052898 2*n! + 1. 7

%I

%S 3,3,5,13,49,241,1441,10081,80641,725761,7257601,79833601,958003201,

%T 12454041601,174356582401,2615348736001,41845579776001,

%U 711374856192001,12804747411456001,243290200817664001

%N 2*n! + 1.

%H Vincenzo Librandi, <a href="/A052898/b052898.txt">Table of n, a(n) for n = 0..200</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=874">Encyclopedia of Combinatorial Structures 874</a>

%F E.g.f.: (-2-exp(x)+x*exp(x))/(-1+x).

%F Recurrence: {a(2)=5, a(1)=3, (n^2+2*n+1)*a(n)+(-n^2-3*n-1)*a(n+1)+a(n+2)*n}

%F From _Sergei N. Gladkovskii_, Jul 04 2012: (Start)

%F a(0)=3; for n>0, a(n) = n*a(n-1)-n+1.

%F Let E(x) be the e.g.f., then

%F E(x)=(x*G(0)-2)/(x-1), where G(k)= 1 - 1/(x - x^3/(x^2 - (k+1)/G(k+1)));(continued fraction, 3rd kind, 3-step).

%F E(x)=x*G(0)/(x-1), where G(k)= 1 - 1/(x + 2*x*(x-1)*k!/(1 - 2*(x-1)*k! - x^2/(x^2 + 2*(x-1)*(k+1)!/G(k+1)))); (continued fraction, 3rd kind, 4-step).

%F (End).

%p spec := [S,{S=Union(Sequence(Z),Sequence(Z),Set(Z))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%p a[0]:=3: for n from 1 to 21 do a[n]:=n*a[n-1]-n+1; od:

%p seq(a[n], n=0..20). # _Sergei N. Gladkovskii_, Jul 04 2012

%t lst={};s=-3;Do[s+=(n+=s*n);AppendTo[lst, s], {n, 0, 5!}];lst (* _Vladimir Joseph Stephan Orlovsky_, Oct 10 2008 *)

%t FoldList[#1*#2 - #2 + 1 &, 3, Range[19]] (* _Robert G. Wilson v_, Jul 07 2012 *)

%t Table[2 n! + 1, {n, 0, 20}] (* _Vincenzo Librandi_, Sep 29 2013 *)

%o (MAGMA) [2*Factorial(n) + 1: n in [0..20]]; /* or */ [3] cat [n eq 1 select n+2 else n*Self(n-1)-n+1: n in [1..25] ]; // _Vincenzo Librandi_, Sep 29 2013

%Y Cf. sequences of the type k*n!+1: A038507 (k=1), this sequence, A173324 (k=3), A173322 (k=4), A173319 (k=5), A173314 (k=6).

%K nonn,easy

%O 0,1

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E Definition replaced with the closed formula by _Bruno Berselli_, Sep 28 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 14 12:19 EDT 2019. Contains 328006 sequences. (Running on oeis4.)