login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052897 E.g.f.: exp(2*x/(1-x)). 11

%I

%S 1,2,8,44,304,2512,24064,261536,3173888,42483968,621159424,9841950208,

%T 167879268352,3065723549696,59651093528576,1231571119812608,

%U 26883546193002496,618463501807058944

%N E.g.f.: exp(2*x/(1-x)).

%C Previous name was: A simple grammar.

%H Vincenzo Librandi, <a href="/A052897/b052897.txt">Table of n, a(n) for n = 0..200</a>

%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=873">Encyclopedia of Combinatorial Structures 873</a>

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F E.g.f.: exp(2*x/(1-x)). - _Vladeta Jovovic_, Jan 04 2001

%F Recurrence: {a(0)=1, a(1)=2, (n^2+n)*a(n)+(-4-2*n)*a(n+1)+a(n+2)}.

%F LAH transform of A000079: a(n) = Sum_{k=0..n) 2^k*n!/k!*binomial(n-1, k-1). - _Vladeta Jovovic_, Oct 17 2003

%F a(n)=n!*L(n,-1,-2) - _Karol A. Penson_, Oct 16 2006 [Here L(n,a,x) is the n-th generalized Laguerre polynomial with parameter a, evaluated at x. L(n,a,x) is 1 if n=0, a+1-x if n=1 and otherwise (2*n+a-1-x)/n*L(n-1,a,x)-(n+a-1)/n*L(n-2,a,x). - _Peter Luschny_, Nov 20 2011]

%F a(n) ~ 2^(-1/4)*exp(2*sqrt(2*n)-n-1)*n^(n-1/4). - _Vaclav Kotesovec_, Oct 09 2012

%F E.g.f.: 1 + 2*x/((1-x)*T(0) - x), where T(k) = 4*k+1 + x^2/((4*k+3)*(1-x)^2 + x^2/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 30 2013

%F E.g.f.: exp(Sum_{k>=1} 2*x^k). - _Vaclav Kotesovec_, Mar 07 2015

%F a(n) = Sum_{k=0..n} binomial(n,k)*l(k)*l(n-k), where l(m) = A000262(m). - _Emanuele Munarini_, Aug 31 2017

%p L := proc(n,a,x) if n=0 then 1 elif n=1 then a+1-x else (2*n+a-1-x)/n*L(n-1,a,x) - (n+a-1)/n*L(n-2,a,x) fi end: A052897 := n -> n!*L(n,-1,-2): seq(A052897(n),n=0..17); # _Peter Luschny_, Nov 20 2011

%p spec := [S,{B=Set(C),C=Sequence(Z,1 <= card),S=Prod(B,B)},labeled]: seq(combstruct[count](spec,size=n), n=0..20);

%t Range[0, 19]! CoefficientList[ Series[E^(2*x/(1 - x)), {x, 0, 19}], x] - _Zerinvary Lajos_, Mar 21 2007

%o (PARI) a=Vec(exp(2*x/(1-x)));for(n=2,#a-1,a[n+1]*=n!);a \\ _Charles R Greathouse IV_, Nov 20 2011

%o (MAGMA) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(2*x/(1 - x)))); [Factorial(n-1)*b[n]: n in [1..m]]; // _G. C. Greubel_, May 15 2018

%Y Row sums of A059110.

%Y Cf. A000262, A025168, A255806.

%K easy,nonn

%O 0,2

%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000

%E New name using e.g.f., _Vaclav Kotesovec_, Feb 25 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 22:20 EDT 2019. Contains 327252 sequences. (Running on oeis4.)