%I #17 May 28 2018 18:26:56
%S 1,16,100,408,1290,3432,8052,17160,33891,62920,110968,187408,304980,
%T 480624,736440,1100784,1609509,2307360,3249532,4503400,6150430,
%U 8288280,11033100,14522040,18915975
%N Partial sums of A050405.
%D A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
%D Murray R.Spiegel, Calculus of Finite Differences and Difference Equations, "Schaum's Outline Series", McGraw-Hill, 1971, pp. 10-20, 79-94.
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,8,-1).
%F a(n) = (9n+7)*C(n+6, 6)/7.
%F G.f.: (1+8*x)/(1-x)^8.
%t LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,16,100,408,1290,3432,8052,17160},30] (* _Harvey P. Dale_, May 28 2018 *)
%Y Cf. A050405.
%Y Cf. A093644 ((9, 1) Pascal, column m=7).
%K easy,nonn
%O 0,2
%A _Barry E. Williams_, Jan 28 2000