login
a(n) = A000172(n)^2.
4

%I #19 Feb 02 2024 16:15:24

%S 1,4,100,3136,119716,5071504,230553856,11016601600,546360462244,

%T 27888242788624,1456587070867600,77515424509446400,

%U 4189899499315360000,229472379264509977600,12709952101698593689600,710863065714510068187136

%N a(n) = A000172(n)^2.

%D R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 191.

%H Seiichi Manyama, <a href="/A052144/b052144.txt">Table of n, a(n) for n = 0..500</a>

%F P-recursive: P(n-1)*n^4*a(n) = P(n)*Q(n)*a(n-1) + 8*P(n-1)*Q(n)*a(n-2) - 512*P(n)*(n-2)^4*a(n-3), where P(n) = 7*n^2 - 7*n + 2 and Q(n) = 57*n^4 - 228*n^3 + 321*n^2 - 186*n + 40 with a(0) = 1, a(1) = 4 and a(2) = 100. - _Peter Bala_, Feb 01 2024

%F a(n) ~ 2^(6*n+2) / (3*Pi^2*n^2). - _Vaclav Kotesovec_, Feb 02 2024

%t A052144[n_] := HypergeometricPFQ[{-n, -n, -n}, {1, 1}, -1]^2;

%t Array[A052144, 20, 0] (* _Paolo Xausa_, Jan 30 2024, after _Jean-François Alcover_ in A000172 *)

%Y Cf. A000172.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Jan 23 2000