Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #35 Jan 30 2025 14:43:25
%S 0,1,2,3,4,6,76,2837,6001,7076
%N Numbers k such that (k!)^2 + k! + 1 is prime.
%D H. Dubner, Factorial and primorial primes, J. Rec. Math., 19 (No. 3) (1987)
%H C. K. Caldwell, <a href="http://www.utm.edu/research/primes/">The Prime Pages</a>
%H C. Nash, <a href="http://pages.prodigy.net/chris_nash/primeform.html">Prime Form</a> [broken link]
%H M. Oakes, <a href="http://groups.yahoo.com/group/primeform/message/10881">Re: Gaussian primorial and factorial primes</a>, Primeform, Dec 21 2010 [broken link]
%H Mike Oakes, Andrew Walker, David Broadhurst, <a href="/A046029/a046029.txt">Gaussian primorial and factorial primes</a>, digest of 7 messages in primeform Yahoo group, Dec 20 - Dec 21, 2010.
%e 6 is in the sequence because (6!)^2+6!+1=519121 is prime.
%t Do[If[PrimeQ[n!^2+n!+1], Print[n]], {n, 600}] (* _Farideh Firoozbakht_, Jul 12 2003 *)
%Y Cf. A002981, A002982, A046029.
%K nonn,hard,more,changed
%O 1,3
%A Andrew Walker (ajw01(AT)uow.edu.au), Dec 13 1999
%E Edited by _R. J. Mathar_, Aug 08 2008
%E a(8)-a(10) from _Serge Batalov_, Nov 24 2011