login
Numbers n such that there exists a binomial coefficient C(n,k) where C(n,k)-1 and C(n,k)+1 are twin primes and 2<=k<=floor(n/2).
2

%I #4 Jun 29 2008 03:00:00

%S 4,11,54,69,77,89,91,155,173,199,202,202,208,218,245,272,286,293,293,

%T 323,324,347,368,370,373,379,413,489,512,514,533,549,552,558,637,650,

%U 674,731,749,759,771,773,782,783,787,811,849,850,883,896,902,927,937

%N Numbers n such that there exists a binomial coefficient C(n,k) where C(n,k)-1 and C(n,k)+1 are twin primes and 2<=k<=floor(n/2).

%C The integer 202 occurs twice because both C(202,34) and C(202,69) yield twin prime pairs.

%H <a href="http://science.kennesaw.edu/~jdemaio/twinbc.htm">Source</a>

%e The integer 11 is a member of the sequence because C(11,5)=462 and 461 and 463 are twin primes.

%Y A051735, A051771.

%K nonn

%O 1,1

%A Joe DeMaio (jdemaio(AT)kennesaw.edu), Dec 08 1999