```
Notes on OEIS A051442 https://oeis.org/A051442
a(n) = n^{n+1} + (n+1)^n for n \ge 0by Mathew Englander
a(n) = A093898(n+1, n), n \ge 1 https://oeis.org/A093898
a(n) = a(n-1) + A258389(n), n \ge 1 https://oeis.org/A258389
a(n) = A007778(n) + A000169(n+1) https://oeis.org/A007778
                                    https://oeis.org/A000169 
Compare:
https://oeis.org/A076980 Leyland numbers
https://oeis.org/A173054 Numbers of the form a^b+b<sup>\land</sup>a, a > 1, b > ahttps://oeis.org/A208506 p^{(p+1)} + (p+1)^p, where p = prime(n)Theorems about divisibility of A051442(n)
I. For all n \neq 1, a(n) mod 8 = 1.
II. Considering the values of n and a(n) mod 6:
     for n mod 6 \in \{0, 3, 5\}, a(n) mod 6 = 1;
     for n mod 6 = 1, a(n) mod 6 = 3;
     for n mod 6 \in \{2, 4\}, a(n) mod 6 = 5.
III. For n \ge 0, a(n)-1 is a multiple of n^2.
IV. For n odd and n \geq 3, a(n)-1 is a multiple of (n+1)^2;
     for n even and n \ge 0, a(n)+1 is a multiple of (n+1)^2.
Theorem I proof.
Considering the powers of m mod 8, we observe the following:
if m ≡ 0 then m^k ≡ 0 for all k ≥ 1;
if m ≡ 1 then m^k ≡ 1 for all k ≥ 0;
if m ≡ 2 then m^k ≡ 0 for all k ≥ 3;
if m = 3 then m^k = 1 for all even k and m^k = 3 for all odd k, k ≥ 0;
if m ≡ 4 then m^k ≡ 0 for all k ≥ 2;
if m = 5 then m^k = 1 for all even k and m^k = 5 for all odd k, k ≥ 0;
if m ≡ 6 then m^k ≡ 0 for all k ≥ 3;
if m ≡ 7 then m^k ≡ 1 for all even k and m^k ≡ 7 for all odd k, k ≥ 0.
The cases n=0 and n=2 are trivial: a(0) = 1 and a(2) = 17 which are
congruent to 1 mod 8. The theorem does not apply to the case n=1. So 
now suppose n \geq 3 and consider a(n) mod 8:
if n = 0 then a(n) = n^(n+1) + (n+1)^n = 0 + 1 = 1;
if n ≡ 1 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1;
if n = 2 then a(n) = n^(n+1) + (n+1)^n = 0 + 1 = 1 (because n is
even);
```
if n = 3 then a(n) = n^(n+1) + (n+1)^n = 1 + 0 = 1 (because n+1 is even); if n = 4 then a(n) = n^(n+1) + (n+1)^n = 0 + 1 = 1 (because n is even); if n = 5 then a(n) = n^(n+1) + (n+1)^n = 1 + 0 = 1 (because n+1 is even); if n = 6 then a(n) = n^(n+1) + (n+1)^n = 0 + 1 = 1 (because n is even); if n = 7 then a(n) = n^(n+1) + (n+1)^n = 1 + 0 = 1 (because n+1 is even). Therefore $a(n)$ mod $8 = 1$ for all $n \ne 1$. O.E.D. Theorem II proof. Considering the powers of m mod 6, we observe the following: if m ≡ 0 then m^k ≡ 0 for all k ≥ 1; if $m \equiv 1$ then $m^k \equiv 1$; if m = 2 then m^k = 4 for k even and k ≥ 2, m^k = 2 for k odd; if m ≡ 3 then m^k ≡ 3 for all k ≥ 1; if m ≡ 4 then m^k ≡ 4 for all k ≥ 1; if m = 5 then m^k = 1 for k even, m^k = 5 for k odd. For the cases $n=0$ and $n=1$, we have $a(0) = 1$ and $a(1) = 3$, which satisfy the proposition to be proved. Now suppose $n > 1$ and consider n and $a(n)$ mod 6 : if n ≡ 0 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1; if n = 1 then a(n) = n^(n+1) + (n+1)^n = 1 + 2 = 3 (because n is odd); if n = 2 then a(n) = n^(n+1) + (n+1)^n = 2 + 3 = 5 (because n+1 is odd); if n = 3 then a(n) = n^(n+1) + (n+1)^n = 3 + 4 = 1; if n = 4 then a(n) = n^(n+1) + (n+1)^n = 4 + 1 = 5 (because n is even); if n = 5 then a(n) = n^(n+1) + (n+1)^n = 1 + 0 = 1 (because n+1 is even). Therefore, considering the values of n and a(n) mod 6: for $n = 0$, 3, or 5, $a(n) = 1$; for $n \equiv 1$, $a(n) \equiv 3$; for $n \equiv 2$ or 4, $a(n) \equiv 5$. Q.E.D. Theorem III proof. For $n = 0$, 1, or 2 we have: $a(\theta) - 1 = \theta$, which is a multiple of θ^2 ; $a(1) - 1 = 2$, which is a multiple of 1^2 ; $a(2) - 1 = 16$. which is a multiple of 2^2 . Now suppose $n > 2$ and consider the binomial expansion of $(n+1)^n$:

 $n^n + \binom{n}{n}$ 1 $\binom{n}{2}$ 2)*n ⁿ*−²+...+(*n n*−2 $(n^2 + (n$ *n*−1)*n*+1 The penultimate term, (*n n*−1)*n* , is equal to n^2. Every term to the left of that one is a multiple of n^2. It's only the rightmost term, 1, that is not a multiple of n^2. Therefore we have $(n+1)$ ^n = 1 mod n^2. Because $n > 2$, we can say $n^{(n+1)} \equiv 0 \mod n^2$. Now $a(n) - 1 = n^{(n+1)} + (n+1)^n - 1 = 0 + 1 - 1 = 0$ mod n^2 . Therefore for all $n \ge 0$, a(n)-1 is a multiple of n^2. Q.E.D. Theorem IV proof. For n=0 we have $a(0) + 1 = 2$, which is a multiple of 1^2. The case n=1 is excluded from this theorem. So now suppose $n \geq 2$. Let $m = n+1$. Consider $(m-1)^m$ *mod* m^2 . First look at the binomial expansion of (m - $1)$ \hat{m} : m^m ⁻ $\binom{m}{n}$ 1 $(m^{m-1} + m)$ 2)*m ^m*−²−...*±*(*m m*−2 $\left(m^2 \pm \left(m\right)\right)$ *m*−1)*m±* 1 The rightmost term in this expansion is $+1$ if m is even, and -1 if m is odd. The penultimate term, *±*(*m m*−1)*m* , is ±m^2. All the terms to the left of that one are multiples of m^2. So we have $(m-1)$ ^m ≡ 1 if m is even, -1 if m is odd, mod m². Also, $m^{(m-1)} \equiv 0$ mod m^{2} . (We can say this because $m \ge 3$, since $n \ge 2$ and $m=n+1.$) Therefore $(m-1)^m + m^m(-1) = +1$ if m is even, -1 if m is odd, mod m^2 . And since m=n+1, we now have: $a(n) = +1$ if n is odd, -1 if n is even, mod $(n+1)^2$, for all n > 2. Therefore: For n odd and $n > 2$, a(n)-1 is a multiple of $(n+1)^2$; for n even and $n \ge 0$, $a(n)+1$ is a multiple of $(n+1)^2$. Q.E.D.