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a(n) = A093898(n+1, n), n ≥ 1     https://oeis.org/A093898
a(n) = a(n–1) + A258389(n), n ≥ 1 https://oeis.org/A258389  
a(n) = A007778(n) + A000169(n+1)  https://oeis.org/A007778
                                  https://oeis.org/A000169 

Compare:
https://oeis.org/A076980   Leyland numbers
https://oeis.org/A173054   Numbers of the form a^b+b^a, a > 1, b > a 
https://oeis.org/A208506   p^(p+1) + (p+1)^p, where p = prime(n) 

 

Theorems about divisibility of A051442(n)

I.   For all n ≠ 1, a(n) mod 8 = 1.

II.  Considering the values of n and a(n) mod 6:
     for n mod 6 ∈ {0, 3, 5}, a(n) mod 6 = 1;
     for n mod 6 = 1,         a(n) mod 6 = 3;
     for n mod 6 ∈ {2, 4},    a(n) mod 6 = 5.

III. For n ≥ 0, a(n)–1 is a multiple of n^2.

IV.  For n odd  and n ≥ 3, a(n)–1 is a multiple of (n+1)^2;
     for n even and n ≥ 0, a(n)+1 is a multiple of (n+1)^2.

Theorem I proof.
Considering the powers of m mod 8, we observe the following:
if m ≡ 0 then m^k ≡ 0 for all k ≥ 1;
if m ≡ 1 then m^k ≡ 1 for all k ≥ 0;
if m ≡ 2 then m^k ≡ 0 for all k ≥ 3;
if m ≡ 3 then m^k ≡ 1 for all even k and m^k ≡ 3 for all odd k, k ≥ 0;
if m ≡ 4 then m^k ≡ 0 for all k ≥ 2;
if m ≡ 5 then m^k ≡ 1 for all even k and m^k ≡ 5 for all odd k, k ≥ 0;
if m ≡ 6 then m^k ≡ 0 for all k ≥ 3;
if m ≡ 7 then m^k ≡ 1 for all even k and m^k ≡ 7 for all odd k, k ≥ 0.

The cases n=0 and n=2 are trivial: a(0) = 1 and a(2) = 17 which are 
congruent to 1 mod 8. The theorem does not apply to the case n=1. So 
now suppose n ≥ 3 and consider a(n) mod 8:
if n ≡ 0 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1;
if n ≡ 1 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1;
if n ≡ 2 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1 (because n is 
even);



if n ≡ 3 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1 (because n+1 is 
even);
if n ≡ 4 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1 (because n is 
even);
if n ≡ 5 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1 (because n+1 is 
even);
if n ≡ 6 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1 (because n is 
even);
if n ≡ 7 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1 (because n+1 is 
even).

Therefore a(n) mod 8 = 1 for all n ≠ 1. Q.E.D. 

Theorem II proof.
Considering the powers of m mod 6, we observe the following:
if m ≡ 0 then m^k ≡ 0 for all k ≥ 1;
if m ≡ 1 then m^k ≡ 1;
if m ≡ 2 then m^k ≡ 4 for k even and k ≥ 2, m^k ≡ 2 for k odd;
if m ≡ 3 then m^k ≡ 3 for all k ≥ 1;
if m ≡ 4 then m^k ≡ 4 for all k ≥ 1;
if m ≡ 5 then m^k ≡ 1 for k even, m^k ≡ 5 for k odd.

For the cases n=0 and n=1, we have a(0) = 1 and a(1) = 3, which 
satisfy the proposition to be proved. Now suppose n > 1 and consider n
and a(n) mod 6:
if n ≡ 0 then a(n) = n^(n+1) + (n+1)^n ≡ 0 + 1 ≡ 1;
if n ≡ 1 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 2 ≡ 3 (because n is odd);
if n ≡ 2 then a(n) = n^(n+1) + (n+1)^n ≡ 2 + 3 ≡ 5 (because n+1 is 
odd);
if n ≡ 3 then a(n) = n^(n+1) + (n+1)^n ≡ 3 + 4 ≡ 1;
if n ≡ 4 then a(n) = n^(n+1) + (n+1)^n ≡ 4 + 1 ≡ 5 (because n is 
even);
if n ≡ 5 then a(n) = n^(n+1) + (n+1)^n ≡ 1 + 0 ≡ 1 (because n+1 is 
even).

Therefore, considering the values of n and a(n) mod 6:
     for n ≡ 0, 3, or 5, a(n) ≡ 1;
     for n ≡ 1, a(n) ≡ 3;
     for n ≡ 2 or 4, a(n) ≡ 5.
Q.E.D.

Theorem III proof.
For n = 0, 1, or 2 we have:
a(0) – 1 = 0, which is a multiple of 0^2;
a(1) – 1 = 2, which is a multiple of 1^2;
a(2) – 1 = 16. which is a multiple of 2^2.
Now suppose n > 2 and consider the binomial expansion of (n+1)^n:
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The penultimate term, ( n
n−1

)n , is equal to n^2. Every term to the left

of that one is a multiple of n^2. It’s only the rightmost term, 1, 
that is not a multiple of n^2. Therefore we have (n+1)^n ≡ 1 mod n^2.

Because n > 2, we can say n^(n+1) ≡ 0 mod n^2.

Now a(n) – 1 = n^(n+1) + (n+1)^n – 1 ≡ 0 + 1 – 1 ≡ 0 mod n^2. 

Therefore for all n ≥ 0, a(n)–1 is a multiple of n^2. Q.E.D.

Theorem IV proof.
For n=0 we have a(0) + 1 = 2, which is a multiple of 1^2. The case n=1
is excluded from this theorem. So now suppose n ≥ 2. Let m = n+1. 

Consider (m –1)mmod m2 . First look at the binomial expansion of (m – 
1)^m:
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The rightmost term in this expansion is +1 if m is even, and –1 if m 

is odd. The penultimate term, ± ( m
m−1

)m , is ±m^2. All the terms to the

left of that one are multiples of m^2. So we have (m–1)^m ≡ 1 if m is 
even, –1 if m is odd, mod m^2.

Also, m^(m–1) ≡ 0 mod m^2. (We can say this because m ≥ 3, since n ≥ 2
and m=n+1.) 

Therefore  (m–1)^m + m^(m–1) ≡ +1 if m is even, –1 if m is odd, mod 
m^2.

And since m=n+1, we now have:

a(n) ≡ +1 if n is odd, –1 if n is even, mod (n+1)^2, for all n > 2.

Therefore:
  For n odd  and n > 2, a(n)–1 is a multiple of (n+1)^2;
  for n even and n ≥ 0, a(n)+1 is a multiple of (n+1)^2.
Q.E.D.


