login
Numbers that are 4-persistent but not 5-persistent.
9

%I #38 Apr 29 2022 03:47:50

%S 1053274689,1089467253,1253094867,1267085493,1268547309,1269085473,

%T 1273085469,1308547269,1308549267,1326854907,1327068549,1328746905,

%U 1450687329,1450732869,1450867293,1450928673,1452687309,1452690873

%N Numbers that are 4-persistent but not 5-persistent.

%C A number n is k-persistent iff all of {n, 2*n, ..., k*n} are pandigital (in the sense of A171102).

%H Hans Havermann, <a href="/A051020/b051020.txt">Table of n, a(n) for n = 1..1000</a> (corrected by Sean A. Irvine, Apr 28 2022)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PersistentNumber.html">Persistent Number</a>

%o (PARI) is_A051020(n)=for(i=1, 5, 9<#Set(Vec(Str(i*n))) || return(i>4)) \\ _M. F. Hasler_, Jan 10 2012

%Y Cf. A171102 (pandigital), A204047 (smallest n-persistent), A051264 (1-persistent), A051018 (2-persistent), A051019 (3-persistent), A204096 (5-persistent), A204097 (6-persistent).

%K nonn,base

%O 1,1

%A _Eric W. Weisstein_

%E Definition corrected by Franklin T. Adams-Watters, Jan 09 2012

%E Sequence corrected by _Hans Havermann_, Jan 11 2012