login
Haupt-exponents of 3 modulo integers relatively prime to 3.
4

%I #13 Feb 26 2024 13:56:29

%S 1,2,4,6,2,4,5,3,6,4,16,18,4,5,11,20,3,6,28,30,8,16,12,18,18,4,8,42,

%T 10,11,23,42,20,6,52,20,6,28,29,10,30,16,12,22,16,12,35,12,18,18,30,

%U 78,4,8,41,16,42,10,88,6,22,23,36,48,42,20,100,34,6,52,53,27,20,12

%N Haupt-exponents of 3 modulo integers relatively prime to 3.

%H R. J. Mathar, <a href="/A050975/b050975.txt">Table of n, a(n) for n = 1..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MultiplicativeOrder.html">Multiplicative Order</a>

%p A001651 := proc(n)

%p (3*(2*n-1)-(-1)^n)/4 ;

%p end proc:

%p A050975 := proc(n)

%p local gcd3 ;

%p gcd3 := A001651(n+1);

%p numtheory[order](3,gcd3) ;

%p end proc: # _R. J. Mathar_, Oct 21 2012

%Y Cf. A002326, A002329, A053446.

%K nonn

%O 1,2

%A _Eric W. Weisstein_