login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that sopfr(k) = sopfr(k - sopfr(k)).
4

%I #21 Dec 25 2016 21:27:34

%S 55,72,84,119,143,256,2106,2211,2279,3024,3150,3551,4284,6360,6500,

%T 9350,10200,10285,10919,13560,14279,14351,15606,16463,17063,23595,

%U 25011,27208,28208,28600,31460,33096,42180,44330,52320,53053,53824

%N Numbers k such that sopfr(k) = sopfr(k - sopfr(k)).

%C sopfr(k) = sum of the prime factors of k (with multiplicity).

%H Paolo P. Lava, <a href="/A050781/b050781.txt">Table of n, a(n) for n = 0..200</a>

%e sopfr(72) = 2+2+2+3+3 = 12 = 2+2+3+5 = sopfr(72 - sopfr(72)), so 72 is in the sequence.

%t sopf[n_]:=Module[{sopfn=Total[Times@@@FactorInteger[n]],m},m=n+sopfn;If[n==m-Total[Times@@@FactorInteger[m]],m,0]]; DeleteCases[Table[ sopf[n],{n,55000}],_?(#==0&)] (* _Harvey P. Dale_, Jun 15 2011 *)

%Y Cf. A001414, A050703-A050710, A050780.

%K nonn,nice

%O 0,1

%A _Patrick De Geest_, Sep 15 1999

%E Edited by _Jon E. Schoenfield_, Dec 25 2016