login
Numbers k such that 139*2^k-1 is prime.
0

%I #24 Jan 17 2019 10:08:17

%S 1,5,7,9,15,19,21,35,37,39,41,49,69,111,115,141,159,181,201,217,487,

%T 567,677,765,811,841,917,1279,1407,1505,1521,1587,2047,2469,2649,3019,

%U 7427,10257,33685,34479,35177,43641,49211,65031,84907,90231,95021,124375,176425,224947,382441,451367

%N Numbers k such that 139*2^k-1 is prime.

%H Ray Ballinger and Wilfrid Keller, <a href="http://www.prothsearch.com/riesel1.html">List of primes k.2^n + 1 for k < 300</a>

%H Wilfrid Keller, <a href="http://www.prothsearch.com/riesel2.html">List of primes k.2^n - 1 for k < 300</a>

%H Kosmaj, <a href="http://www.15k.org/riesellist.html">Riesel list k<300</a>.

%H <a href="/index/Pri#riesel">Index entries for sequences of n such that k*2^n-1 (or k*2^n+1) is prime</a>

%t Select[Range[1000], PrimeQ[139*2^# - 1] & ] (* _Robert Price_, Dec 23 2018 *)

%o (PARI) is(n)=ispseudoprime(139*2^n-1) \\ _Charles R Greathouse IV_, Jun 13 2017

%K hard,nonn

%O 1,2

%A _N. J. A. Sloane_, Dec 29 1999

%E More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008

%E a(49)-a(52) from the Wilfrid Keller link by _Robert Price_, Dec 23 2018