login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A050289 Zeroless pandigital numbers: numbers containing the digits 1-9 and no 0's. 40

%I

%S 123456789,123456798,123456879,123456897,123456978,123456987,

%T 123457689,123457698,123457869,123457896,123457968,123457986,

%U 123458679,123458697,123458769,123458796,123458967,123458976,123459678,123459687,123459768,123459786,123459867,123459876,123465789

%N Zeroless pandigital numbers: numbers containing the digits 1-9 and no 0's.

%C The first 9! = 362880 terms of this sequence are permutations of the digits 1-9 with a(9!) = 987654321. - _Jeremy Gardiner_, May 28 2010

%C First differences are given in A209280 (for the first 9! terms) or in A219664 (for at least as much initial terms). - _M. F. Hasler_, Mar 03 2013

%C A230959(a(n)) = 0. - _Reinhard Zumkeller_, Nov 02 2013

%C After the first 9! terms, the same terms are repeated with a leading '1' prefixed, cf. formula. - _M. F. Hasler_, Jan 08 2020

%H H. Fripertinger, <a href="http://www-ang.kfunigraz.ac.at/~fripert/fga/k1elsn.html">Operate on "9" to display zeroless pandigitals</a>

%H James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=gaVMrqzb91w">Why 381,654,729 is awesome</a>, Numberphile video (2013)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PandigitalNumber.html">Pandigital Number</a>

%F a(n+9!) = a(n) + 10^9 for 1 <= n <= 9!. - _M. F. Hasler_, Jan 08 2020

%o (PARI) apply( {A050289(n)=if(n<=9!,fromdigits(Vec(numtoperm(9,n-1))), n<=2*9!,10^9+A050289(n-9!),"not yet implemented")}, [1..25]) \\ _M. F. Hasler_, Jan 07 2020

%Y Cf. A050290.

%K nonn,base

%O 1,1

%A _Eric W. Weisstein_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 02:39 EDT 2020. Contains 333392 sequences. (Running on oeis4.)