login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049916 a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1. 0

%I #11 Nov 16 2019 03:23:43

%S 1,3,1,4,8,16,32,57,90,211,422,837,1650,3242,6152,11076,17650,41451,

%T 82902,165797,331570,663082,1325832,2650436,5296370,10581242,21097232,

%U 41945796,82897330,161824122,307847382,553894666,882839280

%N a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2*n - 3 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.

%p s := proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:

%p a := proc(n) option remember;

%p `if`(n < 4, [1, 3, 1][n], s(n - 1) - a(-2^ceil(log[2](n - 1)) + 2*n - 3)):

%p end proc:

%p seq(a(n), n = 1..40); # _Petros Hadjicostas_, Nov 15 2019

%K nonn

%O 1,2

%A _Clark Kimberling_

%E Name edited by _Petros Hadjicostas_, Nov 15 2019

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 09:14 EDT 2024. Contains 375730 sequences. (Running on oeis4.)