login
12 times triangular numbers.
26

%I #73 Feb 21 2023 02:13:38

%S 0,12,36,72,120,180,252,336,432,540,660,792,936,1092,1260,1440,1632,

%T 1836,2052,2280,2520,2772,3036,3312,3600,3900,4212,4536,4872,5220,

%U 5580,5952,6336,6732,7140,7560,7992,8436,8892,9360,9840,10332,10836,11352

%N 12 times triangular numbers.

%C a(n-1) is the Wiener index of the helm graph H(n) (n>=3). The graph H(n) is obtained from an n-wheel graph (on n+1 nodes) by adjoining a pendant edge at each node of the cycle. The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. The Wiener polynomial of H(n) is (1/2)*n*t*((n-3)t^3 + 2(n-2)t^2 + (n+3)t + 6). - _Emeric Deutsch_, Sep 28 2010

%C Also sequence found by reading the line from 0, in the direction 0, 12, ..., and the same line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized tetradecagonal numbers A195818. Axis perpendicular to A195158 in the same spiral. - _Omar E. Pol_, Sep 29 2011

%C Also the Wiener index of the (n+1)-gear graph. - _Eric W. Weisstein_, Sep 08 2017

%H G. C. Greubel, <a href="/A049598/b049598.txt">Table of n, a(n) for n = 0..5000</a>

%H B. E. Sagan, Y-N. Yeh and P. Zhang, <a href="http://users.math.msu.edu/users/sagan/Papers/Old/wpg-pub.pdf">The Wiener Polynomial of a Graph</a>, Internat. J. of Quantum Chem., Vol. 60 (1996), pp. 959-969.

%H Leo Tavares, <a href="/A049598/a049598.jpg">Illustration: Centroid Stars</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GearGraph.html">Gear Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HelmGraph.html">Helm Graph</a>.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WienerIndex.html">Wiener Index</a>.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 6*n*(n+1).

%F G.f.: 12*x/(1-x)^3.

%F a(n) = 12*A000217(n). - _Omar E. Pol_, Dec 11 2008

%F a(n) = 12*n + a(n-1) (with a(0)=0). - _Vincenzo Librandi_, Aug 06 2010

%F a(n) = A003154(n+1) - 1. - _Omar E. Pol_, Oct 03 2011

%F a(n) = A032528(2*n+1) - 1. - _Adriano Caroli_, Jul 19 2013

%F a(n) = A001844(n) + A073577(n). - _Bruce J. Nicholson_, Aug 06 2017

%F E.g.f.: 6*x*(x+2)*exp(x). - _G. C. Greubel_, Aug 23 2017

%F From _Amiram Eldar_, Feb 15 2022: (Start)

%F Sum_{n>=1} 1/a(n) = 1/6.

%F Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/3 - 1/6. (End)

%F From _Amiram Eldar_, Feb 21 2023: (Start)

%F Product_{n>=1} (1 - 1/a(n)) = -(6/Pi)*cos(sqrt(5/3)*Pi/2).

%F Product_{n>=1} (1 + 1/a(n)) = (6/Pi)*cos(Pi/(2*sqrt(3))). (End)

%e a(1) = 12*1 + 0 = 12;

%e a(2) = 12*2 + 12 = 36;

%e a(3) = 12*3 + 36 = 72.

%t 12 * Accumulate[Range[0, 50]] (* _Harvey P. Dale_, Feb 05 2013 *)

%t (* Start from _Eric W. Weisstein_, Sep 08 2017 *)

%t Table[6 n (n + 1), {n, 0, 20}]

%t 12 PolygonalNumber[3, Range[0, 20]]

%t 12 Binomial[Range[20], 2]

%t LinearRecurrence[{3, -3, 1}, {12, 36, 72}, {0, 20}]

%t (* End *)

%o (PARI) a(n)=6*n*(n+1) \\ _Charles R Greathouse IV_, Jun 17 2017

%Y Cf. A000217, A001844, A003154, A027468, A035008, A073577.

%K nonn,easy

%O 0,2

%A Joe Keane (jgk(AT)jgk.org)