login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049505 a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1), number of symmetric plane partitions in n-cube. 6

%I #41 Feb 19 2023 09:18:35

%S 1,2,10,112,2772,151008,18076916,4751252480,2740612658576,

%T 3468301123758080,9627912669442441500,58618653300361405440000,

%U 782683432110638830001250000,22916694891747599820616089600000,1471328419282772010324439370939640000

%N a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1), number of symmetric plane partitions in n-cube.

%C The first printing of the Bressoud book states that the formula Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1) in Eq. (6.8) is the number of totally symmetric plane partitions. This is wrong, although it does produce the current sequence. For the correct formula for the number of totally symmetric plane partitions see A005157.

%D D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.8), p. 198.

%H T. D. Noe, <a href="/A049505/b049505.txt">Table of n, a(n) for n = 0..40</a>

%H P. J. Taylor, <a href="http://cheddarmonk.org/papers/distinct-dimer-hex-tilings.pdf">Counting distinct dimer hex tilings</a>, Preprint, 2015.

%H P. J. Taylor, <a href="https://arxiv.org/abs/1602.06796">Counting distinct dimer hex tilings</a>, arXiv:1602.06796 [math.CO], 2016.

%F a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1).

%F a(n) = Product_{i=1..n} (((2*i-2)!*(i+2*n-1)!)/((i+n-1)!*(2*i+n-2)!)). - _Jean-François Alcover_, Jun 22 2012

%F a(n) = Product_{i=1..n} (binomial((i-1) + 2*n, n)/binomial(n + 2*(i-1), n)). - _Olivier Gérard_, Feb 25 2015

%F a(n) ~ exp(1/24) * 3^(9*n^2/4 + 3*n/4 - 1/24) / (A^(1/2) * n^(1/24) * 2^(3*n^2 + n/2 + 1/8)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - _Vaclav Kotesovec_, Mar 01 2015

%F From _Peter Bala_, Feb 15 2023: (Start)

%F a(n+1) = m(n)*a(n) where m(n) = ((3*n + 2)!*n!^2)/((2 n)!*(2 n + 1)!^2) * Product_{i = 1..n} n + 2*i for n >= 1.

%F Conjectures:

%F 1) the supercongruence a(p) == 2^((p+1)/2) (mod p^3) holds for all primes p >= 3 (checked up to p = 1009).

%F 2) the congruence a(p^2) == (-1)^((p^2-1)/8)*a(p)^(p^2-p+1) (mod p^3) holds for all primes p >= 3 (checked up to p = 89).

%F 3) the congruence a(p^3) == a(p^2)^((p^3-p^2+2)/2) (mod p^3) holds for all primes p >= 2. (End)

%p A049505 := proc(n) local i,j; mul(mul((i+j+n-1)/(i+j-1),j=i..n),i=1..n); end;

%t a[n_] := Product[ ((2i-2)!*(i+2n-1)!)/((i+n-1)!*(2i+n-2)!), {i, 1, n}]; Table[a[n], {n, 0, 14}] (* _Jean-François Alcover_, Jun 22 2012, after PARI *)

%o (PARI) a(n)=prod(i=1,n,prod(j=i,n,(i+j+n-1)/(i+j-1)))

%Y Main diagonal of array A102539.

%Y Main diagonal of array in A073165.

%Y Cf. A005157, A008793.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, Jun 30 2013; codes and formula checked by _N. J. A. Sloane_ and _Olivier Gérard_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 05:18 EDT 2024. Contains 371964 sequences. (Running on oeis4.)