login
Row sums of triangle A049374.
6

%I #13 Jun 04 2018 08:23:23

%S 1,1,7,61,649,8245,122215,2069425,39328465,827226505,19047582055,

%T 475956135205,12815133759385,369605936607805,11361372997850695,

%U 370609338222772825,12780705695068446625,464412124831585889425,17729002673226394402375,709180766131239680070925

%N Row sums of triangle A049374.

%H Alois P. Heinz, <a href="/A049402/b049402.txt">Table of n, a(n) for n = 0..415</a>

%H W. Lang, <a href="http://www.cs.uwaterloo.ca/journals/JIS/index.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

%F E.g.f. exp(p(x)) with p(x) := (1-(1-x)^5)/(5*(1-x)^5) (E.g.f. first column of A049374).

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p binomial(n-1, j-1)*(j+4)!/5!*a(n-j), j=1..n))

%p end:

%p seq(a(n), n=0..25); # _Alois P. Heinz_, Aug 01 2017

%t a[0] = 1; a[n_] := a[n] = Sum[Binomial[n - 1, j - 1]*(j + 4)!/5!*a[n - j], {j, 1, n}];

%t Table[a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jun 04 2018, after _Alois P. Heinz_ *)

%Y Cf. A049374.

%K easy,nonn

%O 0,3

%A _Wolfdieter Lang_

%E a(0)=1 prepended by _Alois P. Heinz_, Aug 01 2017