login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Primes p such that p+1 is divisible by a square.
8

%I #40 Aug 10 2024 22:32:42

%S 3,7,11,17,19,23,31,43,47,53,59,67,71,79,83,89,97,103,107,127,131,139,

%T 149,151,163,167,179,191,197,199,211,223,227,233,239,241,251,263,269,

%U 271,283,293,307,311,331,337,347,349,359,367,379,383,419,431,439,443

%N Primes p such that p+1 is divisible by a square.

%C Numbers m such that A010051(m)*(1-A008966(m+1)) = 1. - _Reinhard Zumkeller_, May 21 2009

%C This sequence is infinite and its relative density in the sequence of primes is equal to 1 - Product_{p prime} (1-1/(p*(p-1))) = 1 - A005596 = 0.626044... (Mirsky, 1949). - _Amiram Eldar_, Feb 14 2021

%H T. D. Noe, <a href="/A049098/b049098.txt">Table of n, a(n) for n = 1..1000</a>

%H Leon Mirsky, <a href="https://www.jstor.org/stable/2305811">The number of representations of an integer as the sum of a prime and a k-free integer</a>, The American Mathematical Monthly, Vol. 56, No. 1 (1949), pp. 17-19.

%F A160696(a(n)) > 1. - _Reinhard Zumkeller_, May 24 2009

%e 31 is a term because 32 is divisible by a square, 16.

%e 101 is not a term because 102 = 2*3*17 is squarefree.

%p with(numtheory): a := proc (n) if isprime(n) = true and issqrfree(n+1) = false then n else end if end proc: seq(a(n), n = 1 .. 500); # _Emeric Deutsch_, Jun 21 2009

%t Select[Prime[Range[200]],!SquareFreeQ[#+1]&] (* _Harvey P. Dale_, Mar 27 2011 *)

%t Select[Prime[Range[200]], MoebiusMu[# + 1] == 0 &] (* _Alonso del Arte_, Oct 18 2011 *)

%o (Haskell)

%o a049098 n = a049098_list !! (n-1)

%o a049098_list = filter ((== 0) . a008966 . (+ 1)) a000040_list

%o -- _Reinhard Zumkeller_, Oct 18 2011

%o (PARI) forprime(p=2,1e4,if(!issquarefree(p+1),print1(p", "))) \\ _Charles R Greathouse IV_, Oct 18 2011

%Y Cf. A005596, A008966, A010051, A049097 (complement with respect to A000040), A160696.

%K nonn,easy,nice

%O 1,1

%A _Labos Elemer_