This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048655 Generalized Pellian with second term equal to 5. 24

%I

%S 1,5,11,27,65,157,379,915,2209,5333,12875,31083,75041,181165,437371,

%T 1055907,2549185,6154277,14857739,35869755,86597249,209064253,

%U 504725755,1218515763,2941757281,7102030325

%N Generalized Pellian with second term equal to 5.

%C Equals binomial transform of A143095: (1, 4, 2, 8, 4, 16, 8, 32,...). - _Gary W. Adamson_, Jul 23 2008

%H T. D. Noe, <a href="/A048655/b048655.txt">Table of n, a(n) for n = 0..300</a>

%H M. Bicknell, <a href="http://www.fq.math.ca/Scanned/13-4/bicknell.pdf">A primer on the Pell sequence and related sequences</a>, Fibonacci Quarterly, Vol. 13, No. 4, 1975, pp. 345-349.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/3-3/horadam.pdf">Basic properties of a certain generalized sequence of numbers</a>, Fibonacci Quarterly, Vol. 3, No. 3, 1965, pp. 161-176.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434.

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/9-3/horadam-a.pdf">Pell identities</a>, Fib. Quart., Vol. 9, No. 3, 1971, pps. 245-252.

%H Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive sequences</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,1)

%F a(n) = 2*a(n-1) + a(n-2); a(0)=1, a(1)=5.

%F a(n) = ((4+sqrt(2))(1+sqrt(2))^n - (4-sqrt(2))(1-sqrt(2))^n)/2*sqrt(2).

%F a(n) = P(n) - 3*P(n+1) + 2*P(n+2). - _Creighton Dement_, Jan 18 2005

%F G.f.: (1+3*x)/(1 - 2*x - x^2). - _Philippe DelĂ©ham_, Nov 03 2008

%F E.g.f.: exp(x)*(cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x)). - _Vaclav Kotesovec_, Feb 16 2015

%F a(n) = 3*Pell(n) + Pell(n+1), where Pell = A000129. - _Vladimir Reshetnikov_, Sep 27 2016

%p with(combinat): a:=n->3*fibonacci(n, 2)+fibonacci(n+1, 2): seq(a(n), n=0..26); # _Zerinvary Lajos_, Apr 04 2008

%t a[n_]:=(MatrixPower[{{1,2},{1,1}},n].{{4},{1}})[[2,1]]; Table[a[n],{n,0,40}] (* _Vladimir Joseph Stephan Orlovsky_, Feb 20 2010 *)

%t LinearRecurrence[{2,1},{1,5},30] (* _Harvey P. Dale_, Nov 05 2011 *)

%o (Maxima)

%o a[0]:1\$

%o a[1]:5\$

%o a[n]:=2*a[n-1]+a[n-2]\$

%o A048655(n):=a[n]\$

%o makelist(A048655(n),n,0,30); /* _Martin Ettl_, Nov 03 2012 */

%o (PARI) a(n)=([0,1; 1,2]^n*[1;5])[1,1] \\ _Charles R Greathouse IV_, Feb 09 2017

%o (MAGMA) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)/(1-2*x-x^2))); // _G. C. Greubel_, Jul 26 2018

%Y Cf. A001333, A000129, A048654, A143095.

%K easy,nice,nonn

%O 0,2

%A _Barry E. Williams_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.