The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048590 Pisot sequence L(8,9). 2

%I

%S 8,9,11,14,18,24,32,43,58,79,108,148,203,279,384,529,729,1005,1386,

%T 1912,2638,3640,5023,6932,9567,13204,18224,25153,34717,47918,66139,

%U 91289,126003,173918,240054,331340,457340,631255,871306,1202643,1659980,2291232,3162535

%N Pisot sequence L(8,9).

%H Colin Barker, <a href="/A048590/b048590.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = 2*a(n-1) - a(n-2) + a(n-4) - a(n-5) for n > 5 (holds at least up to n = 1000 but is not known to hold in general).

%t RecurrenceTable[{a[0] == 8, a[1] == 9, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 50}] (* _Bruno Berselli_, Feb 05 2016 *)

%o (MAGMA) Lxy:=[8,9]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..50]]; // _Bruno Berselli_, Feb 05 2016

%o (PARI) pisotL(nmax, a1, a2) = {

%o a=vector(nmax); a[1]=a1; a[2]=a2;

%o for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2]));

%o a

%o }

%o pisotL(50, 8, 9) \\ _Colin Barker_, Aug 07 2016

%Y See A008776 for definitions of Pisot sequences.

%Y Cf. A003411.

%K nonn

%O 0,1

%A _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 13:02 EDT 2021. Contains 343823 sequences. (Running on oeis4.)