The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048062 Number of nonempty subsets of {1,2,...,n} in which exactly 2/3 of the elements are <= (n-4)/2. 1
 0, 0, 0, 0, 0, 0, 0, 6, 7, 21, 24, 76, 90, 270, 325, 945, 1155, 3311, 4102, 11611, 14547, 40755, 51555, 143227, 182703, 503943, 647548, 1775092, 2295646, 6259162, 8141055, 22092135, 28881463 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,8 LINKS Robert Israel, Table of n, a(n) for n = 1..3592 FORMULA From Robert Israel, Feb 27 2020: (Start) a(12*k) = 6*(3*k+1)*(3*k-1)*(2*k-1)*hypergeom([1, -6*k-1, 2-3*k, -3*k+5/2],[3/2, 2, 2],-1) for k >= 1. a(12*k+1) = 9*(3*k-1)*(1+2*k)*(2*k-1)*hypergeom([1, 2-3*k, -6*k-2, -3*k+5/2],[3/2, 2, 2],-1) for k >= 1. a(12*k+2) = 3*(-1+6*k)*(3*k-1)*(1+2*k)*hypergeom([1, 2-3*k, -6*k-2, -3*k+3/2],[3/2, 2, 2],-1) for k >= 1. a(12*k+3) = 2*(-1+6*k)*(2+3*k)*(3*k-1)*hypergeom([1, 2-3*k, -6*k-3, -3*k+3/2],[3/2, 2, 2],-1) for k >= 1. a(12*k+4) = 6*k*(2+3*k)*(-1+6*k)*hypergeom([1, -6*k-3, 1-3*k, -3*k+3/2],[3/2, 2, 2],-1). a(12*k+5) = 3*k*(5+6*k)*(-1+6*k)*hypergeom([1, 1-3*k, -6*k-4, -3*k+3/2],[3/2, 2, 2],-1). a(12*k+6) = 3*k*(5+6*k)*(1+6*k)*hypergeom([1, 1-3*k, -6*k-4, -3*k+1/2],[3/2, 2, 2],-1). a(12*k+7) = 18*k*(k+1)*(1+6*k)*hypergeom([1, 1-3*k, -6*k-5, -3*k+1/2],[3/2, 2, 2],-1). a(12*k+8) = 6*(3*k+1)*(1+6*k)*(k+1)*hypergeom([1, -3*k, -6*k-5, -3*k+1/2],[3/2, 2, 2],-1). a(12*k+9) = (3*k+1)*(6*k+7)*(1+6*k)*hypergeom([1, -3*k, -6-6*k, -3*k+1/2],[3/2, 2, 2],-1). a(12*k+10) = 3*(1+2*k)*(3*k+1)*(6*k+7)*hypergeom([1, -3*k, -6-6*k, -3*k-1/2],[3/2, 2, 2],-1). a(12*k+11) = 6*(1+2*k)*(4+3*k)*(3*k+1)*hypergeom([1, -3*k, -6*k-7, -3*k-1/2],[3/2, 2, 2],-1). (End) MAPLE G[0]:= i -> 6*(3*i+1)*(3*i-1)*(2*i-1)*hypergeom([1, -6*i-1, 2-3*i, -3*i+5/2], [3/2, 2, 2], -1): G[1]:= i -> 9*(3*i-1)*(1+2*i)*(2*i-1)*hypergeom([1, 2-3*i, -6*i-2, -3*i+5/2], [3/2, 2, 2], -1): G[2]:= i -> 3*(-1+6*i)*(3*i-1)*(1+2*i)*hypergeom([1, 2-3*i, -6*i-2, -3*i+3/2], [3/2, 2, 2], -1): G[3]:= i -> 2*(-1+6*i)*(2+3*i)*(3*i-1)*hypergeom([1, 2-3*i, -6*i-3, -3*i+3/2], [3/2, 2, 2], -1): G[4]:= i -> 6*i*(2+3*i)*(-1+6*i)*hypergeom([1, 1-3*i, -6*i-3, -3*i+3/2], [3/2, 2, 2], -1): G[5]:= i -> 3*i*(5+6*i)*(-1+6*i)*hypergeom([1, -6*i-4, 1-3*i, -3*i+3/2], [3/2, 2, 2], -1): G[6]:= i -> 3*i*(5+6*i)*(1+6*i)*hypergeom([1, -6*i-4, 1-3*i, 1/2-3*i], [3/2, 2, 2], -1): G[7]:= i -> 18*i*(i+1)*(1+6*i)*hypergeom([1, -5-6*i, 1-3*i, 1/2-3*i], [3/2, 2, 2], -1): G[8]:= i -> 6*(3*i+1)*(1+6*i)*(i+1)*hypergeom([1, -3*i, -5-6*i, 1/2-3*i], [3/2, 2, 2], -1): G[9]:= i -> (3*i+1)*(6*i+7)*(1+6*i)*hypergeom([1, -3*i, -6-6*i, 1/2-3*i], [3/2, 2, 2], -1): G[10]:= i -> 3*(1+2*i)*(3*i+1)*(6*i+7)*hypergeom([1, -3*i, -6-6*i, -1/2-3*i], [3/2, 2, 2], -1): G[11]:= i -> 6*(1+2*i)*(4+3*i)*(3*i+1)*hypergeom([1, -3*i, -6*i-7, -1/2-3*i], [3/2, 2, 2], -1): f:= n -> simplify(G[n mod 12](floor(n/12))): for i from 1 to 3 do f(i):= 0 od: map(f, [\$1..100]); # Robert Israel, Feb 27 2020 CROSSREFS Sequence in context: A042757 A257312 A062369 * A295729 A081284 A185509 Adjacent sequences:  A048059 A048060 A048061 * A048063 A048064 A048065 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 11:07 EST 2020. Contains 338765 sequences. (Running on oeis4.)