login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) = 2^(k-1)*(k + 2*n) - n + 1, array read by descending antidiagonals.
11

%I #21 Jan 03 2023 07:21:13

%S 1,2,1,5,3,1,13,8,4,1,33,20,11,5,1,81,48,27,14,6,1,193,112,63,34,17,7,

%T 1,449,256,143,78,41,20,8,1,1025,576,319,174,93,48,23,9,1,2305,1280,

%U 703,382,205,108,55,26,10,1,5121,2816,1535,830,445,236,123,62,29,11,1

%N T(n, k) = 2^(k-1)*(k + 2*n) - n + 1, array read by descending antidiagonals.

%C Previous name was: Array T read by diagonals; n-th difference of (T(k,n),T(k,n-1),...,T(k,0)) is k+n, for n=1,2,3,...; k=0,1,2,...

%F T(n, k) = 2^(k-1)*(k + 2*n) - n + 1. - _Benoit Cloitre_, Jun 17 2003

%F G.f.: (1 - x - 3*y + 4*x*y + 3*y^2 - 5*x*y^2)/((1 - x)^2*(1 - 2*y)^2*(1 - y)). - _Stefano Spezia_, Jan 02 2023

%e From _Stefano Spezia_, Jan 03 2023: (Start)

%e The array begins:

%e 1, 2, 5, 13, 33, 81,...

%e 1, 3, 8, 20, 48, 112,...

%e 1, 4, 11, 27, 63, 143,...

%e 1, 5, 14, 34, 78, 174,...

%e 1, 6, 17, 41, 93, 205,...

%e 1, 7, 20, 48, 108, 236,...

%e ...

%e (End)

%t T[n_,k_]:=2^(k-1)*(k+2n)-n+1;Table[Reverse[Table[T[n-k,k],{k,0,n}]],{n,0,10}]//Flatten (* _Stefano Spezia_, Jan 02 2023 *)

%Y Row 1 = (1, 2, 5, 13, 33, ...) = A005183.

%Y Row 2 = (1, 3, 8, 20, 48, ...) = A001792.

%K nonn,tabl

%O 0,2

%A _Clark Kimberling_

%E New name using formula by _Benoit Cloitre_, _Joerg Arndt_, Jan 03 2023