Don,

For 1, 6, 31, you sent me to Fredman, J. ACM Jan 1982

...but I don't find that sequence there!

Did I misunderstand your reference?

Best regards

[Diagonal elements \(N(i,j) \) where \(N(i,j) \) is defined on page 253 (also page 254)

\[
\begin{array}{cccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
2 & 6 & 12 & 20 & 30 & 42 \\
2 & 12 & 31 & 64 & 115 & 188 \\
4 & 20 & 64 & 160 & etc
\end{array}
\]

To get generating function can use Hautus/Klasmann paper on "diagonal of a double power series" c. 1970

Fredman gives asymptotics of diagonal elements on top of page 255

I opened the letter to put this in)

P.S. \[N(i,j)+c = N(i-1,j)+c + N(i,j-1)+c + N(i-1,j-1)+c + 1-2c \]

suggests that \(2N(i,j)+1 \) might be simpler...

Then the diagonal is 1, 3, 13, 63, oh! It's # 1184
\[a \left(y \left(n, k \right) \right) \quad \text{opt rem.} \]

\[\text{if } n = 1 \left(\checkmark \right) \]

\[\text{if } n = 1 \quad \text{then } k \text{ else } \]

\[\text{then } k \]

\[\text{elif } h = 1 \text{ then } q \]

\[\text{or } \left(+1 \right) \text{ fi } \]