Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Sep 08 2022 08:44:57
%S 0,3,4,7,10,11,14,17,18,21,24,25,28,31,32,35,38,39,42,45,46,49,52,53,
%T 56,59,60,63,66,67,70,73,74,77,80,81,84,87,88,91,94,95,98,101,102,105,
%U 108,109,112,115,116,119,122,123,126,129,130,133,136,137,140
%N Numbers that are congruent to {0, 3, 4} mod 7.
%C Record values in A168223: a(n) = A168223(A168224(n)) and A168223(m) < a(n) for m < A168224(n). - _Reinhard Zumkeller_, Nov 20 2009
%C Also: Numbers n such that kronecker(n^2-4,7) = -1. - _M. F. Hasler_, Mar 14 2013
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F G.f.: x(3+x+3x^2)/((1-x)^2*(1+x+x^2)). - _R. J. Mathar_, Sep 17 2008
%F a(n) = a(n-1) + a(n-3) - a(n-4), n>4. - _Vincenzo Librandi_, Mar 24 2011
%F From _Wesley Ivan Hurt_, Jun 13 2016: (Start)
%F a(n) = (21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9.
%F a(3k) = 7k-3, a(3k-1) = 7k-4, a(3k-2) = 7k-7. (End)
%p A047342:=n->(21*n-21-6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9: seq(A047342(n), n=1..100); # _Wesley Ivan Hurt_, Jun 13 2016
%t Select[Range[0,150], MemberQ[{0,3,4}, Mod[#,7]]&] (* _Harvey P. Dale_, Mar 18 2011 *)
%t CoefficientList[Series[(3x+x^2+3x^3)/((-1+x)^2(1+x+x^2)),{x,0,160}],x] (* _Vladimir Joseph Stephan Orlovsky_, Jan 26 2012 *)
%t LinearRecurrence[{1, 0, 1, -1},{0, 3, 4, 7},61] (* _Ray Chandler_, Aug 25 2015 *)
%o (Magma) [n : n in [0..150] | n mod 7 in [0, 3, 4]]; // _Wesley Ivan Hurt_, Jun 13 2016
%Y Cf. A168223, A168224.
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_