|
|
A046890
|
|
a(n) has exactly n anagrams that are primes.
|
|
1
|
|
|
1, 2, 13, 113, 149, 1013, 1039, 1247, 1123, 1349, 1579, 1237, 10127, 10238, 10139, 10235, 10234, 10457, 11579, 10789, 10237, 11239, 12457, 10279, 12349, 12347, 13678, 12359, 14579, 13489, 10379, 12367, 12389, 23579, 13579, 100349, 12379
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
An anagram is a permutation of digits not beginning with 0.
|
|
LINKS
|
Chai Wah Wu, Table of n, a(n) for n = 0..511
|
|
MATHEMATICA
|
ap[n_] := Count[FromDigits /@ Select[Permutations[IntegerDigits[n]], First[#] != 0 &], _?PrimeQ]; t = {1}; Do[i = 1; While[ap[i] != n, i++]; AppendTo[t, i], {n, 30}]; t (* Jayanta Basu, Jun 29 2013 *)
|
|
CROSSREFS
|
Cf. A046810.
Sequence in context: A277463 A277469 A046888 * A166921 A046811 A046813
Adjacent sequences: A046887 A046888 A046889 * A046891 A046892 A046893
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
David W. Wilson
|
|
STATUS
|
approved
|
|
|
|