%I #8 Mar 07 2020 21:14:22
%S 1,2,1,3,3,2,2,4,3,4,1,3,3,3,3,5,3,4,3,5,5,2,2,4,3,4,2,4,4,4,4,6,3,4,
%T 3,5,5,4,4,6,5,6,1,3,3,3,3,5,3,4,3,5,5,3,3,5,4,5,3,5,5,5,5,7,3,4,3,5,
%U 5,4,4,6,5,6,3,5,5,5,5,7,5,6,5,7,7,2,2,4,3,4,2,4,4
%N Number of 1's in binary expansion of 3n+2.
%H S. R. Finch, P. Sebah and Z.Q. Bai, <a href="http://arXiv.org/abs/0802.2654">Odd Entries in Pascal's Trinomial Triangle</a> (arXiv:0802.2654)
%F a(2n+1) = a(n) + 1, since 6n+5 = 2(3n+2)+1.  _Ralf Stephan_, Mar 05 2004
%K nonn
%O 0,2
%A _N. J. A. Sloane_
