The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A046738 Period of Fibonacci 3-step sequence A000073 mod n. 17

%I

%S 1,4,13,8,31,52,48,16,39,124,110,104,168,48,403,32,96,156,360,248,624,

%T 220,553,208,155,168,117,48,140,1612,331,64,1430,96,1488,312,469,360,

%U 2184,496,560,624,308,440,1209,2212,46,416,336,620,1248,168

%N Period of Fibonacci 3-step sequence A000073 mod n.

%C Could also be called the tribonacci Pisano periods. [_Carl R. White_, Oct 05 2009]

%C Klaska notes that n=208919=59*3541 satisfies a(n) = a(n^2). - _Michel Marcus_, Mar 03 2016

%C 39, 78, 273, 546 also satisfy a(n) = a(n^2). - _Michel Marcus_, Mar 07 2016

%H T. D. Noe [1..1000] + Jean-François Alcover [1001..2000] + Zhong Ziqian [2001..20000], <a href="/A046738/b046738.txt">Table of n, a(n) for n = 1..20000</a>

%H Jirí Klaška, <a href="http://dml.cz/dmlcz/137497">A search for Tribonacci-Wieferich primes</a>, Acta Mathematica Universitatis Ostraviensis, vol. 16 (2008), issue 1, pp. 15-20.

%H Jirí Klaška, <a href="http://www.fq.math.ca/Papers1/46_47-4/Klaska.pdf">On Tribonacci-Wieferich primes</a>, Fibonacci Quart. 46/47 (2008/2009), no. 4, 290-297.

%H Jirí Klaška, <a href="http://dx.doi.org/10.1007/s10114-010-8433-8">Tribonacci partition formulas modulo m</a>, Acta Mathematica Sinica, English Series, March 2010, Volume 26, Issue 3, pp 465-476.

%t Table[a = {0, 1, 1}; a = a0 = Mod[a, n]; k = 0; While[k++; s = a[[3]] + a[[2]] + a[[1]]; a = RotateLeft[a]; a[[-1]] = Mod[s, n]; a != a0]; k, {n, 100}] (* _T. D. Noe_, Aug 28 2012 *)

%Y Cf. A106302.

%Y Cf. A001175.

%K nonn

%O 1,2

%A _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 08:07 EDT 2021. Contains 343940 sequences. (Running on oeis4.)