%I #13 Dec 18 2015 03:36:56
%S 2,3,5,7,131,151,11311,1117111,111111151111111,
%T 111111111111111111131111111111111111111,
%U 1111111111111111111111111111111117111111111111111111111111111111111,1111111111111111111111111111111111111111111115111111111111111111111111111111111111111111111
%N Palindromic primes whose product of digits is a prime.
%C Except for the first 4 terms, a subsequence of A088281. - _Chai Wah Wu_, Dec 17 2015
%C Subsequence of A028842, of A046703, and also of A117058. - _Michel Marcus_, Dec 18 2015
%H Chai Wah Wu, <a href="/A046705/b046705.txt">Table of n, a(n) for n = 1..15</a>
%t t = Prime[Range[4]]; Union[Select[Flatten[Table[NestList[FromDigits[Flatten[{1, IntegerDigits[#], 1}]] &, n, 45], {n, t}]], PrimeQ]] (* _Jayanta Basu_, Jun 27 2013 *)
%o (Python)
%o from __future__ import division
%o from sympy import isprime
%o A046705_list = [n for n in ((10**(2*l+1)-1)//9+d*10**l for l in range(100) for d in [1,2,4,6]) if isprime(n)] # _Chai Wah Wu_, Dec 17 2015
%Y Cf. A028842, A046703, A088281, A117058.
%K base,nonn
%O 1,1
%A _Felice Russo_