Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 25 2024 14:36:22
%S 14,17,21,30,33,34,39,42,46,55,57,70,73,78,82,85,93,97,102,130,133,
%T 142,155,177,190,193,195,203,219,253,259,291,323,355,435,483,555,595,
%U 627,667,715,723,763,795,955,1003,1027,1227,1243,1387,1411,1435,1507,1555
%N Numbers n such that Q(sqrt(-n)) has class number 4.
%C Contains 54 numbers [Arno, Theorem 7], ..., 1387, 1411, 1435, 1507 and 1555. [_R. J. Mathar_, May 01 2010]
%H Steven Arno, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa60/aa6042.pdf">The imaginary quadratic fields of class number 4</a>, Acta Arithm. vol 60 issue 4 (1991).
%H Steven Arno, M. L. Robinson, Ferrell S. Wheeler, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa83/aa8341.pdf">Imaginary quadratic fields with small odd class number</a>, Acta Arith. 83 (1998) 295-330.
%H Keith Matthews, <a href="http://www.numbertheory.org/classnos/">Tables of imaginary quadratic fields with small class numbers</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PythagoreanTriple.html">Pythagorean Triple.</a>
%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>
%o (PARI) \\ See A005847
%Y See A003173, A005847, A006203, A046085, A046002, A055109, A046004, A055110, A046006, A055111 for class numbers 1 through 10.
%K nonn,fini,full
%O 1,1
%A _N. J. A. Sloane_, Jun 16 2000