login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A042900 Numerators of continued fraction convergents to sqrt(982). 2
31, 63, 94, 2883, 2977, 8837, 550871, 1110579, 1661450, 50954079, 52615529, 156185137, 9736094023, 19628373183, 29364467206, 900562389363, 929926856569, 2760416102501, 172075725211631, 346911866525763, 518987591737394, 15916539618647583, 16435527210384977 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 17674, 0, 0, 0, 0, 0, -1).

FORMULA

G.f.: (31 +63*x +94*x^2 +2883*x^3 +2977*x^4 +8837*x^5 +2977*x^6 -2883*x^7 +94*x^8 -63*x^9 +31*x^10 -x^11)/(1 -17674*x^6 +x^12). - Vincenzo Librandi, Dec 09 2013

a(n) = 17674*a(n-6) - a(n-12). - Vincenzo Librandi, Dec 09 2013

MATHEMATICA

Numerator[Convergents[Sqrt[982], 30]] (* or *) CoefficientList[Series[(31 + 63 x + 94 x^2 + 2883 x^3 + 2977 x^4 + 8837 x^5 + 2977 x^6 - 2883 x^7 + 94 x^8 - 63 x^9 + 31 x^10 - x^11)/(1 - 17674 x^6 + x^12), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 09 2013 *)

PROG

(MAGMA) I:=[31, 63, 94, 2883, 2977, 8837, 550871, 1110579, 1661450, 50954079, 52615529, 156185137]; [n le 12 select I[n] else 17674*Self(n-6)-Self(n-12): n in [1..30]]; // Vincenzo Librandi, Dec 09 2013

CROSSREFS

Cf. A042901.

Sequence in context: A042906 A042904 A042902 * A239128 A042910 A042908

Adjacent sequences:  A042897 A042898 A042899 * A042901 A042902 A042903

KEYWORD

nonn,cofr,frac,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vincenzo Librandi, Dec 09 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 20:41 EDT 2021. Contains 343089 sequences. (Running on oeis4.)