%I #17 May 03 2023 17:56:26
%S 31,94,125,219,344,10539,10883,21422,32305,118337,7369199,22225934,
%T 29595133,51821067,81416200,2494307067,2575723267,5070030334,
%U 7645753601,28007291137,1744097804095,5260300703422,7004398507517,12264699210939,19269097718456
%N Numerators of continued fraction convergents to sqrt(978).
%H Vincenzo Librandi, <a href="/A042892/b042892.txt">Table of n, a(n) for n = 0..200</a>
%H <a href="/index/Rec#order_20">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,236674,0,0,0,0,0,0,0,0,0,-1).
%F G.f.: -(x^19 - 31*x^18 + 94*x^17 - 125*x^16 + 219*x^15 - 344*x^14 + 10539*x^13 - 10883*x^12 + 21422*x^11 - 32305*x^10 - 118337*x^9 - 32305*x^8 - 21422*x^7 - 10883*x^6 - 10539*x^5 - 344*x^4 - 219*x^3 - 125*x^2 - 94*x - 31) / (x^20 - 236674*x^10 + 1). - _Colin Barker_, Dec 25 2013
%F a(n) = 236674*a(n-10) - a(n-20). - _Wesley Ivan Hurt_, May 03 2023
%t Numerator[Convergents[Sqrt[978], 30]] (* _Vincenzo Librandi_, Dec 08 2013 *)
%Y Cf. A042893, A040946.
%K nonn,frac,easy
%O 0,1
%A _N. J. A. Sloane_
%E More terms from _Colin Barker_, Dec 25 2013