The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A042856 Numerators of continued fraction convergents to sqrt(959). 2
 30, 31, 929, 960, 58529, 59489, 1783710, 1843199, 112375650, 114218849, 3424722271, 3538941120, 215761189471, 219300130591, 6575464976610, 6794765107201, 414261371408670, 421056136515871, 12624889330368929, 13045945466884800, 795381617343456929, 808427562810341729 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 1920, 0, 0, 0, -1). FORMULA G.f.: (30 + 31*x + 929*x^2 + 960*x^3 + 929*x^4 - 31*x^5 + 30*x^6 - x^7)/(1 - 1920*x^4 + x^8). - Vincenzo Librandi, Dec 07 2013 a(n) = 1920*a(n-4) - a(n-8). - Vincenzo Librandi, Dec 07 2013 MATHEMATICA Numerator[Convergents[Sqrt[959], 30]] (* or *) CoefficientList[Series[(30 + 31 x + 929 x^2 + 960 x^3 + 929 x^4 - 31 x^5 + 30 x^6 - x^7)/(1 - 1920 x^4 + x^8), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 07 2013 *) LinearRecurrence[{0, 0, 0, 1920, 0, 0, 0, -1}, {30, 31, 929, 960, 58529, 59489, 1783710, 1843199}, 30] (* Harvey P. Dale, Apr 09 2015 *) PROG (MAGMA) I:=[ 30, 31, 929, 960, 58529, 59489, 1783710, 1843199 ]; [n le 8 select I[n] else 1920*Self(n-4)-Self(n-8): n in [1..30]]; // Vincenzo Librandi, Dec 07 2013 CROSSREFS Cf. A042857. Sequence in context: A042852 A042854 A268337 * A042857 A042858 A175514 Adjacent sequences:  A042853 A042854 A042855 * A042857 A042858 A042859 KEYWORD nonn,cofr,frac,easy AUTHOR EXTENSIONS More terms from Vincenzo Librandi, Dec 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 1 00:54 EDT 2020. Contains 337440 sequences. (Running on oeis4.)