login
Numerators of continued fraction convergents to sqrt(832).
2

%I #14 Mar 18 2017 17:36:05

%S 28,29,173,375,923,1298,17797,19095,55987,131069,711332,842401,

%T 47885788,48728189,291526733,631781655,1555090043,2186871698,

%U 29984422117,32171293815,94327009747,220825313309,1198453576292,1419278889601,80678071393948,82097350283549

%N Numerators of continued fraction convergents to sqrt(832).

%H Vincenzo Librandi, <a href="/A042606/b042606.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_24">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1684802, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).

%F G.f.: -(x^23 -28*x^22 +29*x^21 -173*x^20 +375*x^19 -923*x^18 +1298*x^17 -17797*x^16 +19095*x^15 -55987*x^14 +131069*x^13 -711332*x^12 -842401*x^11 -711332*x^10 -131069*x^9 -55987*x^8 -19095*x^7 -17797*x^6 -1298*x^5 -923*x^4 -375*x^3 -173*x^2 -29*x -28) / ((x^2 -3*x -1)*(x^2 +3*x -1)*(x^4 -3*x^3 +10*x^2 +3*x +1)*(x^4 +11*x^2 +1)*(x^4 +3*x^3 +10*x^2 -3*x +1)*(x^8 -11*x^6 +120*x^4 -11*x^2 +1)). - _Colin Barker_, Dec 19 2013

%t Numerator[Convergents[Sqrt[832], 30]] (* _Vincenzo Librandi_, Nov 29 2013 *)

%Y Cf. A042607, A040803.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Dec 19 2013