login
Numerators of continued fraction convergents to sqrt(370).
2

%I #17 Apr 22 2018 10:02:11

%S 19,77,327,12503,50339,213859,8176981,32921783,139864113,5347758077,

%T 21530896421,91471343761,3497441959339,14081239181117,59822398683807,

%U 2287332389165783,9209151955346939,39123940210553539,1495918879956381421,6022799460036079223

%N Numerators of continued fraction convergents to sqrt(370).

%H Vincenzo Librandi, <a href="/A041700/b041700.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,654,0,0,1).

%F G.f.: -(x^5-19*x^4+77*x^3+327*x^2+77*x+19) / (x^6+654*x^3-1). - _Colin Barker_, Nov 09 2013

%t Numerator[Convergents[Sqrt[370], 30]] (* _Vincenzo Librandi_, Nov 06 2013 *)

%t LinearRecurrence[{0,0,654,0,0,1},{19,77,327,12503,50339,213859},30] (* _Harvey P. Dale_, Apr 22 2018 *)

%Y Cf. A040350, A041701.

%K nonn,frac,easy

%O 0,1

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 09 2013