This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A041071 Denominators of continued fraction convergents to sqrt(42). 2

%I

%S 1,2,25,52,649,1350,16849,35048,437425,909898,11356201,23622300,

%T 294823801,613269902,7654062625,15921395152,198710804449,413343004050,

%U 5158826853049,10730996710148,133930787374825,278592571459798,3477041644892401,7232675861244600

%N Denominators of continued fraction convergents to sqrt(42).

%H Vincenzo Librandi, <a href="/A041071/b041071.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,26,0,-1).

%F G.f.: -(x^2-2*x-1) / (x^4-26*x^2+1). - _Colin Barker_, Nov 12 2013

%F a(n) = 26*a(n-2) - a(n-4). - _Vincenzo Librandi_, Dec 10 2013

%t Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[42],n]]],{n,1,50}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 22 2011 *)

%t Denominator[Convergents[Sqrt[42], 30]] (* _Vincenzo Librandi_, Dec 10 2013 *)

%t LinearRecurrence[{0,26,0,-1},{1,2,25,52},30] (* _Harvey P. Dale_, Oct 17 2019 *)

%o (MAGMA) I:=[1, 2, 25, 52]; [n le 4 select I[n] else 26*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Dec 10 2013

%Y Cf. A041070.

%K nonn,cofr,easy

%O 0,2

%A _N. J. A. Sloane_.

%E More terms from _Colin Barker_, Nov 12 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 06:26 EST 2019. Contains 329968 sequences. (Running on oeis4.)