%I #21 Jan 17 2024 01:37:54
%S 30,1,3,1,3,20,3,1,3,1,60,1,3,1,3,20,3,1,3,1,60,1,3,1,3,20,3,1,3,1,60,
%T 1,3,1,3,20,3,1,3,1,60,1,3,1,3,20,3,1,3,1,60,1,3,1,3,20,3,1,3,1,60,1,
%U 3,1,3,20,3,1,3,1,60,1,3,1,3,20,3,1,3,1,60,1,3,1,3
%N Continued fraction for sqrt(948).
%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1).
%F From _Amiram Eldar_, Jan 17 2024: (Start)
%F Multiplicative with a(2^e) = 3, a(5^e) = 20, and a(p^e) = 1 for an odd prime p != 5.
%F Dirichlet g.f.: zeta(s) * (1 + 1/2^(s-1)) * (1 + 19/5^s). (End)
%p with(numtheory): Digits := 300: convert(evalf(sqrt(948)),confrac);
%t ContinuedFraction[Sqrt[948],120] (* or *) PadRight[{30},120,{60,1,3,1,3,20,3,1,3,1}] (* _Harvey P. Dale_, Aug 21 2016 *)
%K nonn,cofr,easy,mult
%O 0,1
%A _N. J. A. Sloane_