login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of partitions satisfying cn(0,5) + cn(2,5) <= cn(1,5) + cn(4,5) and cn(0,5) + cn(3,5) <= cn(1,5) + cn(4,5).
0

%I #6 Mar 30 2012 17:20:57

%S 1,1,2,4,4,9,10,14,23,27,39,55,66,92,122,155,202,261,326,427,531,675,

%T 843,1047,1322,1620,2017,2489,3021,3757,4542,5554,6766,8143,9897,

%U 11926,14335,17264,20626,24708,29495,35149,41827,49637,58806

%N Number of partitions satisfying cn(0,5) + cn(2,5) <= cn(1,5) + cn(4,5) and cn(0,5) + cn(3,5) <= cn(1,5) + cn(4,5).

%C For a given partition cn(i,n) means the number of its parts equal to i modulo n.

%C Short: 0 + 2 <= 1 + 4 and 0 + 3 <= 1 + 4 (ZBBAAp).

%K nonn

%O 1,3

%A _Olivier GĂ©rard_