|
|
A039786
|
|
phi(a(n)) is equal to the multiplicative projection of (a(n)-1).
|
|
1
|
|
|
2, 3, 5, 7, 9, 11, 13, 23, 29, 31, 43, 47, 53, 59, 61, 67, 71, 79, 83, 103, 107, 131, 139, 149, 157, 167, 173, 179, 191, 211, 223, 227, 229, 239, 263, 269, 277, 283, 293, 311, 317, 331, 347, 349, 359, 367, 373, 383, 389, 419, 421, 431, 439, 443, 461, 463, 467, 479
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Only primes (except 9) may qualify.
|
|
LINKS
|
|
|
EXAMPLE
|
phi(29)=28, 28=2^2*7^1, 2*2*7*1=28.
|
|
PROG
|
(PARI) is(n)=my(f=factor(n)); eulerphi(f)==prod(i=1, #f~, f[i, 1]*f[i, 2])-1 \\ Charles R Greathouse IV, Mar 11 2014
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|