%I #26 Jan 31 2021 16:37:41
%S 0,0,120,2400,33960,441600,5436960,64509840,745845120,8461348080,
%T 94558053840,1044594244080,11426874632880
%N Configurations of linear chains in a 6-dimensional hypercubic lattice.
%C In the notation of Nemirovsky et al. (1992), a(n), the n-th term of the current sequence is C_{n,m} with m=1 (and d=6). Here, for a d-dimensional hypercubic lattice, C_{n,m} is "the number of configurations of an n-bond self-avoiding chain with m neighbor contacts." (For d=2, we have C_{n,m=1} = A033155(n); for d=3, we have C_{n, m=1} = A047057(n); for d=4, we have C_{n,m=1} = A042949(n); and for d=5, we have C_{n,m=1} = A038727(n). These values appear in Table 1, pp. 1088-1090, of Nemirovsky et al. (1992).) - _Petros Hadjicostas_, Jan 06 2019
%H A. M. Nemirovsky, K. F. Freed, T. Ishinabe, and J. F. Douglas, <a href="http://dx.doi.org/10.1007/BF01049010">Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers</a>, J. Statist. Phys., 67 (1992), 1083-1108; see Eq. 5 (p. 1090) and Eq. 7b (p. 1093).
%Y Cf. A033155, A038727, A042949, A047057.
%K nonn,more
%O 1,3
%A _N. J. A. Sloane_, May 02 2000
%E a(10)-a(11) copied from Table 1, p. 1090, of Nemirovsky et al. (1992) by _Petros Hadjicostas_, Jan 06 2019
%E Name edited by _Petros Hadjicostas_, Jan 06 2019
%E a(12)-a(13) from _Sean A. Irvine_, Jan 31 2021