login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*5^j.
0

%I #12 Dec 05 2021 10:38:04

%S 1,12,5,144,120,25,1728,2160,900,125,20736,34560,21600,6000,625,

%T 248832,518400,432000,180000,37500,3125,2985984,7464960,7776000,

%U 4320000,1350000,225000,15625,35831808,104509440,130636800,90720000,37800000,9450000,1312500,78125

%N Triangle whose (i,j)-th entry is binomial(i,j)*12^(i-j)*5^j.

%H B. N. Cyvin, J. Brunvoll, and S. J. Cyvin, <a href="http://match.pmf.kg.ac.rs/electronic_versions/Match34/match34_109-121.pdf">Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons</a>, Match, No. 34 (Oct 1996), 109-121.

%o (Python)

%o from sympy import binomial

%o def T(i, j): return binomial(i, j)*12**(i-j)*5**j

%o print([T(i, j) for i in range(8) for j in range(i+1)]) # _Michael S. Branicky_, Dec 05 2021

%K nonn,tabl,easy

%O 0,2

%A _N. J. A. Sloane_.