This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A037947 Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group. 7

%I

%S 1,-48,-195804,-33552128,-741989850,9398592,39080597192,3221114880,

%T -808949403027,35615512800,8419515299052,6569640870912,

%U -81651045335314,-1875868665216,145284580589400,1125667983917056,-2519900028948078

%N Coefficients of unique normalized cusp form Delta_26 of weight 26 for full modular group.

%D G. Harder. "A Congruence Between a Siegel and an Elliptic Modular Form." The 1-2-3 of modular forms. Springer Berlin Heidelberg, 2008. 247-262.

%H Seiichi Manyama, <a href="/A037947/b037947.txt">Table of n, a(n) for n = 1..1000</a>

%H Fernando Q. GouvĂȘa, <a href="http://projecteuclid.org/euclid.em/1047920420">Non-ordinary primes: a story</a>, Experimental Mathematics, Volume 6, Issue 3 (1997), 195-205.

%H S. C. Milne, <a href="https://arxiv.org/abs/math/0009130">Hankel determinants of Eisenstein series</a>, preprint, arXiv:0009130 [math.NT], 2000.

%H <a href="/index/Gre#groups_modular">Index entries for sequences related to modular groups</a>

%F G.f.: (E_4(q)^3 - E_6(q)^2)/12^3 * E_6(q) * E_4(q)^2. - _Seiichi Manyama_, Jun 09 2017

%F G.f.: -691*3617/(1728*2*3*5^3*7^2*13) * (E_10(q)*E_16(q) - E_12(q)*E_14(q)). - _Seiichi Manyama_, Jul 25 2017

%e q^2 - 48*q^4 - ...

%t terms = 17;

%t E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms+1}];

%t E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms+1}];

%t ((E4[x]^3 - E6[x]^2)/12^3)*E6[x]*E4[x]^2 + O[x]^(terms+1) // CoefficientList[#, x]& // Rest (* _Jean-FranĂ§ois Alcover_, Feb 27 2018, after _Seiichi Manyama_ *)

%Y Cf. A000594 ((E_4(q)^3 - E_6(q)^2)/12^3), A004009 (E_4(q)), A013973 (E_6(q)), A290182.

%K sign

%O 1,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 20 23:01 EDT 2018. Contains 300991 sequences. (Running on oeis4.)