|
|
A037483
|
|
Base 6 digits are, in order, the first n terms of the periodic sequence with initial period 1,2.
|
|
0
|
|
|
1, 8, 49, 296, 1777, 10664, 63985, 383912, 2303473, 13820840, 82925041, 497550248, 2985301489, 17911808936, 107470853617, 644825121704, 3868950730225, 23213704381352, 139282226288113, 835693357728680, 5014160146372081
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 6a(n-1) + a(n-2) - 6a(n-3).
G.f.: x*(1+2*x) / ( (x-1)*(6*x-1)*(1+x) ). - R. J. Mathar, Apr 26 2015
|
|
MAPLE
|
a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=5*a[n-1]+6*a[n-2]+3 od: seq(a[n], n=1..33); # Zerinvary Lajos, Dec 14 2008
|
|
MATHEMATICA
|
Table[FromDigits[PadRight[{}, n, {1, 2}], 6], {n, 30}] (* or *) LinearRecurrence[ {6, 1, -6}, {1, 8, 49}, 30] (* Harvey P. Dale, Oct 12 2020 *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|