We claim that with $n \geq m \geq 0$

$$
2^{n-m} 3^{m}=(-1)^{n} \sum_{k=0}^{n}(-1)^{k}\binom{m+3 k}{k}\binom{n+2 k}{n-k}
$$

Start by observing that the second binomial coefficient enforces the upper range so that with the usual integrals we get

$$
\begin{aligned}
& \frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma} \frac{(1+w)^{m}}{w} \frac{1}{2 \pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{n}}{z^{n+1}} \\
& \times \sum_{k \geq 0}(-1)^{k} z^{k}(1+z)^{2 k}(1+w)^{3 k} w^{-k} d z d w
\end{aligned}
$$

For the sum to converge we require $\left|z(1+z)^{2}\right|<\left|w /(1+w)^{3}\right|$. With $\varepsilon<1 / 2$ we have $\left|z(1+z)^{2}\right|<9 \varepsilon / 4$ and with $\gamma<1 / 2$ we have $\left|w /(1+w)^{3}\right|>8 \gamma / 27$ thus we require $\varepsilon \leq 32 \gamma / 243$. We may take $\gamma=1 / 3^{Q}$ and $\varepsilon=32 / 3^{Q+5}$ with Q large. Continuing,

$$
\begin{aligned}
& \frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma} \frac{(1+w)^{m}}{w} \frac{1}{2 \pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{n}}{z^{n+1}} \frac{1}{1+z(1+z)^{2}(1+w)^{3} / w} d z d w \\
& =\frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma}(1+w)^{m} \frac{1}{2 \pi i} \int_{|z|=\varepsilon} \frac{(1+z)^{n}}{z^{n+1}} \frac{1}{w+z(1+z)^{2}(1+w)^{3}} d z d w
\end{aligned}
$$

Now put $z=v /(1+w)$ so that $d z=d v /(1+w)$ to get

$$
\begin{gathered}
\frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma}(1+w)^{m} \frac{1}{2 \pi i} \int_{|v|=\rho(w)} \frac{(1+v /(1+w))^{n}}{v^{n+1}}(1+w)^{n+1} \\
\times \frac{1}{w+v(1+v /(1+w))^{2}(1+w)^{3} /(1+w)} \frac{1}{1+w} d v d w \\
=\frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma}(1+w)^{m} \frac{1}{2 \pi i} \int_{|v|=\rho(w)} \frac{(1+w+v)^{n}}{v^{n+1}} \\
\times \frac{1}{w+v(1+w+v)^{2}} d v d w
\end{gathered}
$$

Here $|v|=\rho(w)$ is the image of scaling $|z|=\varepsilon$ by $1+w$ which is a circle of radius $\varepsilon|1+w|$ and is therefore contained in an annulus with inner radius $\varepsilon(1-\gamma)$ and outer radius $\varepsilon(1+\gamma)$. Factorizing,

$$
\begin{aligned}
& \frac{(-1)^{n}}{2 \pi i} \int_{|w|=\gamma}(1+w)^{m} \frac{1}{2 \pi i} \int_{|v|=\rho(w)} \frac{(1+w+v)^{n}}{v^{n+1}} \\
& \quad \times \frac{1}{(v+w)\left(v w+(1+v)^{2}\right)} d v d w
\end{aligned}
$$

We see that with $\gamma \ll 1$ the circle $|v|=\rho(w)$ approximates the contour $|v|=\varepsilon$. The poles in v other than $v=0$ are outside this contour, with the first one requiring that $|v|=\gamma$ whereas $|v|$ approximates ε and the other two becoming arbitrarily close to -1 as Q grows large. Therefore we are justified deforming the contour for v to the circle $|v|=\varepsilon$ independent of w since we do not pick up or lose any poles. Switching integrals with Fubini yields

$$
\begin{gathered}
\frac{(-1)^{n}}{2 \pi i} \int_{|v|=\varepsilon} \frac{1}{v^{n+1}} \frac{1}{2 \pi i} \int_{|w|=\gamma}(1+w)^{m}(1+w+v)^{n} \\
\quad \times \frac{1}{(v+w)\left(v w+(1+v)^{2}\right)} d w d v
\end{gathered}
$$

With the inner integral in w we clearly have the pole at $w=-v$ inside the contour by construction of ε and γ. On the other hand the pole at $w=-(1+v)^{2} / v$ goes to infinity as Q is large and is therefore outside the contour. Therefore the inner integral is the residue at $w=-v$ which yields for the remaining outer integral

$$
\frac{(-1)^{n}}{2 \pi i} \int_{|v|=\varepsilon} \frac{1}{v^{n+1}}(1-v)^{m} \frac{1}{1+2 v} d v
$$

This is

$$
(-1)^{n} \sum_{q=0}^{n}(-1)^{q}\binom{m}{q}(-1)^{n-q} 2^{n-q}=2^{n} \sum_{q=0}^{n}\binom{m}{q} 2^{-q}
$$

Recall that we said $n \geq m$ which yields at last

$$
2^{n}\left(1+\frac{1}{2}\right)^{m}=2^{n-m} 3^{m}
$$

We have the claim and may conclude. We may use the sum that appeared last as a natural way to extend a closed form to the case when $m>n$.

This identity was found by a computer search which pointed to [OEIS A036561](https://oeis.org/A036561), Nicomachus triangle.

