login
Numbers k for which exactly 5 applications of A000005 are needed to reach 2.
4

%I #32 Nov 28 2022 21:48:18

%S 60,72,84,90,96,108,126,132,140,150,156,160,180,198,200,204,220,224,

%T 228,234,240,252,260,276,288,294,300,306,308,315,336,340,342,348,350,

%U 352,360,364,372,380,392,396,414,416,420,432,444,450,460,468,476,480

%N Numbers k for which exactly 5 applications of A000005 are needed to reach 2.

%C Subsequences include A030630 (numbers with 12 divisors), A030636 (numbers with 18 divisors), A030638 (numbers with 20 divisors), A137491 (numbers with 28 divisors), etc. [edited by _Jon E. Schoenfield_, May 12 2018]

%H Robert Israel, <a href="/A036457/b036457.txt">Table of n, a(n) for n = 1..10000</a>

%F d(d(d(d(d(a(n))))))) = 2 for all n.

%F A036459(a(n)) = 5. - _Ivan Neretin_, Jan 25 2016

%e a(13)=180; the successive iterates are 18, 6, 4, 3, and finally the 5th is 2;

%e a(3)=84; divisor numbers are 12, 6, 4, 3, and 2.

%p A036459:= proc(n) option remember;

%p if n <= 2 then 0 else 1 + procname(numtheory:-tau(n)) fi

%p end proc:

%p select(A036459 = 5, [$1..1000]); # _Robert Israel_, Jan 25 2016

%t Select[Range@ 480, Last@ # == 2 && #[[5]] != 2 &@ NestList[DivisorSigma[0, #] &, #, 5] &] (* _Michael De Vlieger_, Jan 26 2016 *)

%o (PARI) is(n)=for(i=1,4,n=numdiv(n); if(n<3, return(0))); numdiv(n)==2 \\ _Charles R Greathouse IV_, Sep 17 2015

%Y Cf. A000005, A007624, A036450, A036452, A036453, A036455, A030630.

%K nonn

%O 1,1

%A _Labos Elemer_

%E New name from _Robert Israel_, Jan 25 2016